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Abstract—A set of wave equations with fractional loss operators in time and space are analyzed. The fractional
Szabo equation, the power law wave equation and the causal fractional Laplacian wave equation are all found
to be low-frequency approximations of the fractional Kelvin-Voigt wave equation and the more general fractional
Zener wave equation. The latter two equations are based on fractional constitutive equations, whereas the former
wave equations have been derived from the desire to model power law attenuation in applications like medical ul-
trasound. This has consequences for use in modeling and simulation, especially for applications that do not satisfy
the low-frequency approximation, such as shear wave elastography. In such applications, the wave equations based

on constitutive equations are the viable ones. (E-mail: sverre @ifi.uio.no)
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INTRODUCTION

Models for ultrasound attenuation based on relaxation
losses have a long history (see, e.g., Bhatia 1967,
Markham et al. 1951). Waag and his co-workers also
contributed with their work on multiple relaxation los-
ses (Nachman et al. 1990). Similar, but much simpler
relaxation models are used for attenuation in salt water
and air. In salt water, the two important relaxation pro-
cesses are due to boric acid and magnesium sulfate
(Ainslie and McColm 1998), and in air, they are due to
nitrogen and oxygen (Bass et al. 1995). In contrast, in
medical ultrasound and elastography, attenuation for
both compressional and shear waves often follows a po-
wer law that at first sight is very different from a relax-
ation model:

(W) = apw’

ey

Here, y usually is between 0 and 2, and w is angular fre-
quency. The subscript k is used to indicate that this is the
imaginary part of the wavenumber, k, and to distinguish it
from the order of the fractional derivative, «, which will
be used later.
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In such media, the number of relaxation processes
may in practice be uncountable, and it has not been
possible to make models for attenuation that are so
grounded in physical processes as for salt water and air.
Nevertheless, the multiple relaxation model with a few
processes can be used to model the power law attenua-
tion, as Waag’s group and several others have done
(Tabei et al. 2003; Yang and Cleveland 2005) over a
limited frequency range. But the relaxation parameters
lose their clear physical meaning in this case and
become just parameters of a mathematical model. Thus,
on the one hand, there is power law attenuation, which
is experimentally observed in many different complex
materials, and on the other hand, physical models,
exemplified by the multiple relaxation model.

In the last decade or so, advances have been made in
providing wave equations that partially bridge this gap.
They model power law attenuation through the use of
fractional (i.e., non-integer) derivatives. To varying de-
grees these equations are physics based, but especially
for some viscoelastic polymers, there is a good physical
foundation (Nasholm and Holm 2013). However, there
is seldom as direct a connection as for the relaxation
models for air and salt water. Nevertheless, they represent
one step on the way to a deeper understanding of the un-
derlying physics. They also provide alternative simula-
tion models for wave propagation, often characterized
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by being parametrized with a small number of
parameters.

For this article, the time fractional derivative is
easiest to define in the frequency domain, where it is an
extension of the Fourier transform of an nth-order
derivative:

o
7 (d d”:ff)) = (i0)*U() )
The fractional derivative of arbitrary order can be under-
stood as a generalization where the integer n is replaced
with a real number «. The close connection between po-
wer laws and fractional derivatives is evident from this
definition. The time domain equivalent involves a convo-
lution integral implying that the fractional derivative is
non-local and has a power law-shaped memory
(Podlubny 1999).

Our purpose in this article is to analyze and compare
several of the fractional wave equations, to understand
their origins and to relate them to each other. The ultimate
objective is to find wave equations that are physically
viable. Another more practical objective is to determine
which wave equations are best suited for simulation of
medical ultrasound and shear wave elastography. One
of the questions asked is: What is the most fundamental
property to model with a wave equation? Is the objective
only to model a power law attenuation, or is it more
fundamental to model a medium with viscoelastic proper-
ties so that different power law attenuation laws are
achieved in different frequency regions?

Because it is usually the low-frequency region that is
of interest, many wave equations model only this region.
But there are applications where the high-frequency re-
gion is important also; one particularly important one is
in shear wave elastography. Even when the interest is
only in the low-frequency solution, such as for ultrasound
imaging, then for the solution to be physically viable, it is
often an advantage that wave equations give correct solu-
tions beyond this region. The key to obtaining such re-
sults is the viscoelastic constitutive equation. This
article, therefore, builds a case for the viewpoint that it
is the viscoelastic constitutive equation that is the more
fundamental and physical property, rather than the power
law characteristics.

It should be noted that here, low frequencies means
low in comparison to the value of a time constant (7, in,
e.g., eqn (4)). Thus, for example, for compressional
waves in medical ultrasound, low frequencies stretch
well beyond the usual range and up into the hundreds
of megahertz or higher. For such an application, the po-
wer law has an exponent, y, between 1 and 2. On the other
hand, it turns out that for shear waves in the human body
in elastography, the low-frequency limit is <10 Hz
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(Holm and Sinkus 2010). Thus, elastography operates
above the low-frequency limit with y less than unity.

Physically viable solutions

There are some criteria that need to be satisfied by
the solutions of wave equations for them to be physically
viable. The first is that of causality: No output is allowed
before there is an input.

The second property is that the loss function cannot
rise arbitrarily fast and has to satisfy

wh_r’rgo a(w)/w=0 3)

This means that the exponent, y, has to be less or equal to
one in the high-frequency limit. This condition was first
given by Weaver and Pao (1981) and more rigorously
by Hanyga (2013). It follows from causality, passivity
and linearity and is a consequence of the property that
viscoelasticity can be modeled as a sum of many
spring-dashpot mechanical models with realistic, that is,
positive, constants (Beris and Edwards 1993).

FRACTIONAL WAVE EQUATIONS

We will give wave equations for plane waves in a ho-
mogenous medium. Figure 1 illustrates how the wave is
modified by transmission through a slab of thickness z.
The wave number is, in general, complex and given by
k = Bi—iay, where the real part describes dispersion and
the imaginary part gives the attenuation. Note that
many papers use the opposite sign for the exponent in
the traveling wave. This will result in somewhat different
wave equations, as illustrated in Appendix A, which has
been included to facilitate comparisons between articles
using different sign conventions.

Fractional time loss operator, type 1
One of the oldest fractional wave equations is due to
Caputo (1967). In the terminology of Wismer (2006), it is

1 0%*u !
o _Lou 2
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where u is the displacement, ¢ is the phase velocity at
zero frequency, ag = 7,/(2co) in eqn (1) and the condition

exp(iwt)
—_—

exp(i(wt-kz)) =
—_—
exp(-a;z) expli(w t - 5,2))

.

z

Fig. 1. A slab of thickness z with a plane wave traveling from
left to right.
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