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Abstract

A fundamental problem in plasma physics, space science, and astrophysics is the transport of energetic particles interacting with
stochastic magnetic fields. In particular the motion of particles across a large scale magnetic field is difficult to describe analytically.
However, progress has been achieved in the recent years due to the development of the unified non-linear transport theory which can
be used to describe magnetic field line diffusion as well as perpendicular diffusion of energetic particles. The latter theory agrees very
well with different independently performed test-particle simulations. However, the theory is still based on different approximations
and assumptions. In the current article we extend the theory by taking into account the finite gyroradius of the particle motion and cal-
culate corrections in different asymptotic limits. We consider different turbulence models as examples such as the slab model, noisy slab
turbulence, and the two-dimensional model. Whereas there are no finite gyroradius corrections for slab turbulence, the perpendicular
diffusion coefficient is reduced in the other two cases. The matter investigated in this article is also related to the parameter a2 occurring
in non-linear diffusion theories.
� 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Energetic particles interact with turbulent magnetic
fields while they propagate through a magnetized plasma.
Due to this interaction, their motion is a stochastic motion.

In addition to turbulent fields d~B, there are also large scale

magnetic fields ~B0 influencing the particle orbit. The latter
field is usually called guide field, mean field, background
field, or large scale field. This type of configuration can
be found in different physical environments such as fusion
devices, the solar wind, or the interstellar medium (see, e.g.,
Schlickeiser (2002), Spatschek (2008), and Shalchi (2009)
for reviews). The turbulent fields described above lead to
a diffusive motion of the particles. Due to the large scale

field one has to distinguish between diffusion along and
across that field. It is often assumed that perpendicular dif-
fusion is more difficult to describe analytically compared to
parallel transport. It should be noted that sub- and
superdiffusive transport has been discussed more recently
in the literature (see, e.g., Zimbardo et al. (2006),
Pommois et al. (2007), Shalchi and Kourakis (2007), and
Zimbardo et al. (2012)).

Previous theories for perpendicular diffusion such as the
Non-Linear Guiding Center (NLGC) theory of Matthaeus
et al. (2003) and the Unified Non-Linear Transport
(UNLT) theory of Shalchi (2010) neglect the rotation of
the particle in the direction perpendicular with respect to
the large scale field. Furthermore, as equation of motion
in such theories, the following Ansatz is used

V x ¼ avzdBx~xðtÞ; t½ �=B0: ð1Þ
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Here we have used the particle position ~xðtÞ at time t, the
z-component of the particle velocity vector vz, the x-com-
ponent of the turbulent magnetic field dBx, the mean
magnetic field B0, and the x-component of the guiding
center velocity vector V x (see Section 2 for more details).
The parameter “a” used here can be seen as an unknown
parameter. If non-linear theories are compared with
test-particle simulations, best agreement is usually found
for values between a2 ¼ 1=3 and a2 ¼ 1 (see, e.g.,
Matthaeus et al. (2003) and Tautz and Shalchi (2011)).
However, analytical work based on the Newton–Lorentz
equation suggests that this parameter is between a2 ¼ 1
and a2 ¼ 2 (see Shalchi and Dosch (2008), Dosch and
Shalchi (2009), and Dosch et al. (2013)).

Especially the UNLT theory has shown remarkable
agreement with test-particle simulations for different turbu-
lence models such as the slab/2D model, the
Goldreich-Sridhar model, Alfvén waves, and noisy reduced
MHD turbulence (see Tautz and Shalchi (2011), Shalchi
(2013), Hussein and Shalchi (2014), Shalchi and Hussein
(2014), and Shalchi and Hussein (2015)). Therefore, we
conclude that the main problem in the theory of perpendic-
ular transport is Eq. (1) and therewith the parameter “a”.

In the current paper we explore the influence of finite
gyroradius effects. To do this we employ two different
approaches, namely:

(1) Quasi-Linear Theory (QLT, see Jokipii (1966)),
(2) Non-linear diffusion theory (see, e.g., Shalchi et al.

(2004) and Shalchi (2010));

For both approaches we compute the perpendicular diffu-
sion coefficient as a function of the gyroradius. Results
are compared with each other and previous findings are
recovered by considering appropriate limits.
Furthermore, we estimate the value of “a” in the context
of finite gyroradius corrections. As examples we consider
three different turbulence models namely the slab model,
a noisy slab model, and the two-dimensional model.

The remainder of this paper is organized as follows. In
Section 2 we briefly discuss the relation between particle
and guiding center coordinates and the corresponding dif-
fusion coefficients. Quasi-linear theory is employed in
Section 3 and in Section 4 we use a more advanced
approach based on non-linear diffusion theory. We end
with a short summary and some conclusions in Section 5.

2. Relation between guiding center and particle coordinates

Usually one is interested in the coordinates of the
charged particle interacting with turbulence. In the
following we refer to these coordinates as particle coordi-
nates and we will use the symbols ~x and ~v for particle
position and velocity, respectively. Alternatively, one can

use the coordinates ~R defined via (see, e.g., Schlickeiser
(2002)).

~R ¼~xþ c
qB0

~p �~ezð Þ ¼~xþ 1

X
~v�~ezð Þ ð2Þ

where X ¼ ðqB0Þ=ðmccÞ is the unperturbed gyrofrequency.
Here we have used the electric charge of the particle q,
the rest mass m, the speed of light c, and the Lorentz factor
c. For the velocity ~v of the particle we use spherical
coordinates

vx ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
cos U

vy ¼ v
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
sin U

vz ¼ vl

ð3Þ

with the particle speed v, the pitch-angle cosine l, and the
gyrophase U.

In the unperturbed case, where we have by definition

d~B ¼ 0, the vector ~R corresponds to the position of the

guiding center. Therefore, we call ~R the guiding center coor-

dinates. To obtain the velocity of the guiding center, we
consider the time derivative of Eq. (2). This gives us

~V :¼ d~R
dt
¼~vþ c

qB0

d~p
dt
�~ez

� �
¼~vþ 1

B0

~v�~B
� �

�~ez

� �

¼ vz

~B
B0

�~v dBz

B0

: ð4Þ

where we have employed the Newton–Lorentz equation

d~p=dt ¼ qð~v�~BÞ=c and the Graßmann Identity

~a� ~b�~c
	 


¼~b ~a �~cð Þ �~c ~a �~b
	 


: ð5Þ

Therefore, we can express the components V i of the guid-
ing center velocity vector by the components of the particle
velocity vector vi and the magnetic field components. Very
often in diffusion theory, turbulence models with dBz ¼ 0
are considered. Examples are the slab and the
two-dimensional model (see below for a definition of these
two models). In this particular case Eq. (4) simplifies to

V x ¼ vz
dBx

B0

; V y ¼ vz
dBy

B0

; and V z ¼ vz: ð6Þ

From a more practical point of view, these equations are
valid as long as the condition dBz � B0 is satisfied. In this
case they can be used as starting point to compute the per-
pendicular diffusion coefficient.

We have to be very careful if particle coordinates or guid-

ing center coordinates are used. The guiding center coordi-
nates (X ; Y ;Z) are related to particle coordinates (x; y; z) via

X ¼ xþ vy

X
; Y ¼ y � vx

X
; and Z ¼ z ð7Þ

as derived from Eq. (2).
The perpendicular diffusion coefficients can be calcu-

lated as time derivatives of the corresponding mean square
displacements. From Eq. (7) we find the following relations
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