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Abstract

This paper is concerned with two-impulse transfers from Earth to Earth–Moon L3 halo orbits. After an orbit injection maneuver from
an Earth orbit, a spacecraft travels on a ballistic accelerated manifold trajectory to a position intersection with a halo orbit where an
orbit injection maneuver is executed. Although many types of transfers are located, our primary concern is transfers that require either
a low transfer time of flight or a small orbit injection maneuver. Several families of transfers lie along the edge of a time of flight/injection
maneuver Pareto Front. These families share similar characteristics and are shown to be an extension of a transfer that utilizes a stable
invariant manifold. The quickest family of transfers to L3 can be completed in 28.5–33 days with an injection maneuver of 61.75–130 m/s,
with shorter duration transfers requiring a larger injection maneuver. The family of transfers with the smallest injection maneuvers given
a duration limit of 140 days required 13.45 m/s.
� 2015 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamics of spacecraft on libration point orbits
(LPOs) and their associated invariant manifolds present
many interesting opportunities for mission design. In the
last four decades, missions such as ISEE-3, Herschel Space
Observatory, Genesis, and ARTEMIS have traveled to and
operated in LPOs about the collinear points L1 and L2 in
the Earth–Moon and Sun–Earth systems. These missions
have a diverse array of objectives; studying the Universe
by the light of the far-infrared and submillimeter portions
of the spectrum, observing and entrapping solar wind par-
ticles and returning them to Earth, and analyzing the effect
of the Sun’s radiation at our Moon.

Presently, missions have only orbited the libration
points L1 and L2. However, there has been an increased
interest in orbits about Earth–Moon L3 due to their advan-
tageous geometry. For example, many orbits at L3 have the
ability to view almost 50% of the Earth’s surface. It has
recently been shown that a constellation of three spacecraft
(two in Earth–Moon L3 LPOs and one in an L1 LPO) can
provide almost complete visibility of the Earth’s surface
(Davis et al., 2013). This constellation could also provide
continuous coverage of geosynchronous regions. Orbits
at L3 are relatively stable and would likely require minimal
station-keeping (Parker et al., 2014). Furthermore, satel-
lites traveling to an L3 orbit require substantially less fuel
than those traveling to geostationary orbit.

In the past, invariant manifolds have been used to con-
struct transfers from Earth to LPOs in both the Sun–Earth
(SE) system, e.g., Genesis (Lo et al., 2001) and the Earth–
Moon (EM) system, e.g., ARTEMIS (Broschart et al.,
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2009). There are many examples in literature of methods to
build these transfer trajectories (Howell et al., 1994; Koon
et al., 2000; Parker and Born, 2008).

1.1. Trajectories to Sun–Earth L3 orbits

Designing a trajectory to the vicinity of Sun–Earth L3 is
particularly challenging since the region lies on the oppo-
site side of the Sun as the Earth with almost the same
Sun–Earth distance. One suggested transfer method is to
use invariant manifold trajectories associated with L3

LPOs. However, the invariant manifolds of L3 Lyapunov
orbits may take thousands of years to leave the vicinity
of L3, never closely approach Earth, and are thus imprac-
tical for mission design (Hou et al., 2008).

Another suggested approach is to utilize the unstable
invariant manifolds of L1 and L2 LPOs since they travel
close to Earth and to the vicinity of L3. These transfers
require over nine years of transfer time. Tantardini com-
pared several methods for reaching L3 orbits (Tantardini,
2009). Bi-elliptic transfers, transfers using patched conics
with gravity assists, and transfers utilizing low-thrust were
modeled using the two-body problem. Following the work
done by Hou et al., transfers using invariant manifolds
associated with Lyapunov orbits about L1 and L2 were also
explored (Tantardini et al., 2010).

1.2. Trajectories to Earth–Moon L3 orbits

Recently, Larsen et al. modeled transfers from a 300 km
low Earth orbit (LEO) to the EM L3 point by employing
the exterior stable manifold of L3 that lies in the x-y plane
(Larsen et al., 2012). The transfer, optimized for minimum
fuel, requires an impulsive burn to leave LEO and then per-
forms a second impulsive maneuver to transfer onto the
stable manifold. The spacecraft then travels along the exte-
rior stable manifold and arrives at L3. The first and second
DVs are 3.07 km/s and 0.41 km/s, respectively, for a total
DV of 3.48 km/s. The transfer time is approximately
200 days.

Haapala et al. constructed sample missions that includ-
ed orbits at or near L3, including a tour of the L3, L4, and
L5 libration points using resonant orbits as the transfer
mechanism, and a transfer between orbits in the vicinity
of L2 and L3 employing manifolds associated with an L2

vertical orbit (Haapala et al., 2013).
Davis et al. introduced the concept of the pseudo-mani-

fold for transfers between low-Earth orbit (LEO) and L3

LPOs (Davis et al., 2013). The trajectories constructed in
that study required two impulsive burns: a tangential burn
executed to depart from LEO, and a halo orbit injection
maneuver upon arrival. The injection maneuver was always
performed in the direction of the velocity component of the
halo orbit’s stable eigenvector, propagated to the injection
location. The total DVs for the transfers ranged between
3.14 km/s and 3.24 km/s and the time of flight (TOF) var-
ied from 44 to 90 days. The orbit insertion maneuvers ran-

ged from 106 m/s to 200 m/s. In this study, we extend upon
our previous work in order to reduce the TOF and/or the
insertion maneuver by allowing the direction of DV2 to
vary.

2. Background

The equations of motion for the Circular Restricted
Three-Body Problem (CRTBP) have been used for trajec-
tory propagation in this study. The CRTBP models the
motion of a particle of negligible mass under the influence
of two larger bodies, termed the primaries. Conventionally,
the larger of the bodies is termed the primary and the
smaller is termed the secondary. The primaries rotate in cir-
cular orbits about the system barycenter. Additionally, the
reference frame rotates about the barycenter at the same
rotation rate as the two primaries. The x-axis extends from
the origin through the secondary, the z-axis extends in the
direction of the angular momentum of the system, and the
y-axis completes the right-hand coordinate frame.

When performing analysis in the CRTBP, it is useful to
normalize the system so certain quantities are dimension-
less. The system is normalized such that the sum of the
masses, the distance between the primaries, and the
gravitational parameter all equal one, and the orbital peri-
od is normalized to 2p. These values are normalized by a
Three-Body parameter l, which is defined as the ratio of
the smaller primary’s mass to the sum of the mass of the
two primaries:

l ¼ m2

m1 þ m2

; ð1Þ

where m1 and m2 are the masses of the primaries and
m1 > m2. After normalizing, the locations of the primary
and secondary become ð�l; 0; 0Þ and ð1� l; 0; 0Þ,
respectively.

The equations describing the motion of the third body
may be written as:
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where r1 and r2 represent the distance from the third body
to the primary and secondary, respectively:

r2
1 ¼ ðxþ lÞ2 þ y2 þ z2 ð3Þ

r2
2 ¼ ðx� 1þ lÞ2 þ y2 þ z2: ð4Þ

The reader is directed to Szebehely (1967) for a deriva-
tion of the equations of motion. The equations derived
by Szebehely differ slightly than the ones presented here,
as the x-axis in Szebehely extends from the origin through
the primary. The Jacobi Constant, C, is an integral of
motion which emerges in this dimensionless, rotating
system:

K. Davis et al. / Advances in Space Research 55 (2015) 1868–1877 1869



Download	English	Version:

https://daneshyari.com/en/article/10694402

Download	Persian	Version:

https://daneshyari.com/article/10694402

Daneshyari.com

https://daneshyari.com/en/article/10694402
https://daneshyari.com/article/10694402
https://daneshyari.com/

