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Abstract

Due to the density stratification, the convection onset criterion in a supercritical fluid layer heated from below includes a stabi-

lizing effect known as the Schwarzschild criterion, which requires an adaptation of the classical low Mach number approximation.

We numerically solve the mathematical model describing the motion of a supercritical fluid in the classical Rayleigh–Bénard con-

figuration and we bring to the fore two main events: (i) the reverse transition of an unstable layer to stability without any external

intervention; (ii) the convection onset according to the Schwarzschild criterion. In addition, the 3D extension of the study is briefly

described.
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1. Introduction

In the past 10 years, many works were devoted to the

natural convection inside a fluid close to its gas–liquid

critical point. The Rayleigh–Bénard configuration re-

ceived a lot of attention within the context of interaction

between convection and the piston effect, a thermoacou-

stic effect responsible for the fast temperature equilib-

rium in a near-supercritical fluid (NCF) (Nitsche and

Straub, 1987; Boukari et al., 1990; Onuki et al., 1990;
Zappoli et al., 1990). Experimental (Kogan et al.,

1999; Kogan and Meyer, 2001) and numerical (Raspo

et al., 1999; Amiroudine et al., 2001; Accary et al.,

2004) studies confirmed the pioneering results of the the-

oretical analysis obtained in 1970s by Gitterman and

Steinberg (1970). These theoretical results showed that,

owing to the divergence of the isothermal compressibil-

ity of the NCF, the classical Rayleigh criterion should be
modified to take into account the compressibility of the

fluid with respect to the hydrostatic pressure, thus

including a stabilizing contribution, the Schwarzschild
criterion or adiabatic temperature gradient criterion,

usually encountered in atmospheric sciences for large

air columns. Moreover, they revealed that, very close

to the critical point, the stability of a NCF layer is gov-

erned by this Schwarzschild criterion, while far from it,

the classical Rayleigh criterion takes control. The cross-

over between the regimes dominated by each of these

two criteria was observed experimentally by Kogan
and Meyer (2001). On the other hand, owing to an adap-

tation of the classical low Mach number approximation

(Accary et al., in press), the direct numerical simulations

(DNS) confirmed the relevance of the stabilizing effect of

the Schwarzschild contribution; indeed, the works (Ras-

po et al., 1999; Amiroudine et al., 2001) show among

others the existence of a cut-off temperature gap inside

the fluid layer under which no convective motion is trig-
gered no matter how thick the layer gets.

In this paper, we numerically solve the Navier–Stokes

equations which describe the motion of a supercritical

fluid in a bidimensional approximation. We show:
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(i) that taking into account the density stratification in

the model is fundamental for the prediction of the con-

vective instability threshold; (ii) that the Schwarzschild

stabilizing effect can lead to a reverse transition towards

a stable state; (iii) how different paths may trigger con-

vection according to either of the two criteria; (iv) some
preliminary 3D results.

2. Model

A NCF is contained between two infinite and no-slip

plates, spaced away by H (H = 15 mm), and subjected to

the earth gravitational field g (Fig. 1). Initially, the fluid
is in thermodynamic equilibrium at a constant tempera-

ture Ti slightly above the critical temperature Tc such

that Ti = (1 + e)Tc, where e defines the dimensionless

proximity to the critical point (e� 1). Under the effect

of its weight, the fluid is stratified in density and pres-

sure: with a mean density equal to its critical value qc.
The DNS starts by increasing the bottom plate temper-

ature by DT (�few mK) while maintaining the top one
at its initial temperature Ti.

The mathematical model for a NCF flow is described

by the Navier–Stokes and energy equations written for a

Newtonian and highly conducting van der Waals fluid

(Zappoli et al., 1990). Despite of its simplicity, the van

der Waals equation of state: yields to a critical diver-

gence as e�1 of the thermal expansion coefficient, of

the isothermal compressibility, and of the heat capacity
at constant pressure. A(1 + K(T/Tc � 1)1/2) law, with

K = 0.75 is used to describe the critical divergence of

the thermal conductivity, while the heat capacity at con-

stant volume and the dynamic viscosity are those of a

perfect gas. We consider the carbon dioxide critical

coordinates (Tc = 304.13 K,qc = 467.8 Kg/m3) and

transport properties. The simulations were carried out

for Ti � Tc = 1 K.

3. Numerical method

The governing equations are solved using a fully im-

plicit finite-volume method on a staggered mesh. The

method is second order accurate in space and third or-

der in time and has been thoroughly validated on an
analytical solution and on several benchmark tests of

natural convection (Accary and Raspo, accepted). The

computational domain is a rectangle (height H:

15 mm, width: 10 mm) and periodic conditions are con-

sidered in the x-direction to simulate infinite horizontal

extend. The mesh size for a grid-independent solution

depends on the heating applied to the bottom plate,
the finest being of (140 · 160) computational points.

For an accurate description of the solution in the

boundary layers, the mesh is refined with a power law

near the bottom and top plates while it is uniform in

the horizontal direction.

4. Acoustic filtering

4.1. Adapted low Mach number approximation

In the classical acoustic filtering, the pressure field is

splitted into two parts: a dynamic pressure only involved

in the momentum equations, and a space homogeneous

time-dependent part that only appears in the energy and

state equations. Owing to the divergence of the isother-
mal compressibility of the NCF, the hydrostatic pres-

sure induces a density variation comparable to that

resulting from the weak heating that we consider. There-

fore, the compressibility of the NCF with respect to the

hydrostatic pressure should be taken into account;

therefore, an adapted low Mach number (ALMN)

approximation was set up. Like the classical low Mach

number (CLMN) approximation, in the adapted one,
pressure is splitted into a dynamic part and a time-

dependent part which includes now the density stratifi-

cation. This ALMN approximation differs from the clas-

sical one in which the fluid compressibility is completely

ignored. However, the assumption of small heating

induces some simplifications and the resulting model

requires no further numerical effort. In the Rayleigh–

Bénard configuration, the proposed model allows taking
account of the stabilizing effect of the hydrostatic pres-

sure and predicts the convection threshold according

to the criterion obtained by means of analytical analysis

(Accary et al., in press).

4.2. Comparison with the classical low Mach number

approximation

Comparisons between the classical model (CLMN)

and the adapted one (ALMN) were carried out for sev-

eral heating cases.

A brief description of the flow is appropriate before

proceeding to the comparisons. The bottom heating in-

duces a thin hot boundary layer (HBL) in which the

density shows large variation due to the divergence of

the thermal expansion coefficient of the NCF. This hot
layer expands upward compressing adiabatically the rest

of the fluid and leading to a fast increase of the temper-Fig. 1. A NCF in the Rayleigh–Bénard configuration.
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