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Background: The functional interconnections of the addicted brain may differ from the non-addicted
population in important ways, but prioranalytic approaches were usually limited to the study of con-
nections between a few number of selected brain regions. Recent approaches enable examination of the
vast functional interactions within the entire brain, the functional connectome (FCM). The purpose of this
study was to characterize FCM alterations in addiction using resting state functional Magnetic Resonance
Imaging (rsfMRI) and to assess their relations to addiction-related symptoms.

Methods: rsfMRI data were acquired from 20 chronic polydrug users whose primary diagnosis was cocaine
dependence (DRUG) and 19 age-matched non-drug using healthy controls (CTL). FCM was assessed using
graph theoretical analysis.

Results: Among the assessed 90 brain subdivisions, DRUG showed stronger functional connectivity. After
controlling functional connectivity difference and the resultant network density, DRUG showed reduced
communication efficiency and reduced small-worldness.

Conclusions: The increased connection strength in drug users’ brain suggests an elevated dynamic resting
state that may enable a rapid, semi-automatic, execution of behaviors directed toward drug-related
goals.The reduced FCM communication efficiency and reduced small-worldness suggest a loss of normal
inter-regional communications and topology features that makes it difficult to inhibit the drug seeking
behavior.
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1. Introduction

Drug addiction is a chronic relapsing disorder that affects the
brain structures and functions (Koob and Volkow, 2010). While
functional neuroimaging investigations have contributed signifi-
cant information about addiction-related brain differences in focal
brain regions and systems (Hong et al., 2009; Janes et al., 2012;
Lindsey et al., 2003; Ma et al., 2010; Volkow et al., 2003), less work
has been done examining the complex brain network and connec-
tivity patterns of multiple brain regions, though those properties
may reflect the (acute or chronic) impact (Bullmore and Sporns,
2009; Rubinov and Sporns, 2010) of drug exposure. Assessing them
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may provide new insights about the addicted brain state, offering
an expanded framework for examining the neuronal underpinnings
of substance dependence.

Brain networks can be assessed using fMRI (Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010) and graph theoretical
analysis (GTA; Watts and Strogatz, 1998). Reliable functional con-
nectome (FCM) topological properties have been demonstrated in
the healthy brain (Achard et al., 2006) with high test-retest sta-
bility (Braun et al., 2012; Wang et al., 2011). In drug addiction,
FCM analysis has been applied in heroin and methamphetamine
abusing populations, and these published reports showed incon-
sistent results with both larger or smaller FCM properties in drug
addicted brain (Ahmadlou et al., 2013; Jiang et al., 2013; Liu et al.,,
2011a). Meanwhile, several seed-based FC studies have shown poor
connectivity between frontal and limbic areas (Gu et al., 2010;
Hong et al., 2009; Kelly et al., 2011; Ma et al., 2010). It is then not
clear whether FCM analysis will echo with the prior seed-based
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Table 1
Demographic data for participants.

Patients (n=20) Controls (n=19)

Age (yrs) 4215+ 43 39.9+45
Education (yrs) 12.07 + 1.7 149429
Gender 20 males 19 males
Cocaine dependence severity 7.26 £ 1.76 0
Alcohol dependence severity 2.68 +2.54 0
Marijuana dependence or abuse 2 0
Drug craving score 0~3,0.28 +£0.83 0
Cigarette per day 7.67 £ 6.0 0
Smoking duration (yrs) 15.61 £ 12.1 0

connectivity analysis results, or whether new patterns will be evi-
dent when the brain’s interconnections are considered as a whole.
In the current study, we examined addiction-related FCM using
resting-state fMRI (rsfMRI) in a drug abusing sample of patients
with a primary diagnosis of cocaine dependence (DRUG) and com-
pared to FCM in a demographically-similar control group (CTL) to
identify potential addiction-related variations.

2. Materials and methods
2.1. Subjects

Twenty drug patients (age 42.15 +4.3 (mean + standard deviation (std)), years
of education 10.07 £1.7 all African-American men) with a DSM-IV diagnosis of
cocaine dependence and 19 and age/ethnicity/race-matched controls (CTL) were
recruited from the local community of West Philadelphia (age: 39.9+4.5; educa-
tion: 14.9 £2.9yrs; all African-American men). The two groups were matched in
age (p=0.13 for the age difference). CTL had more years of education than DRUG
(p=0.0006). Detailed demographic data were listed in Table 1. The patients were
treatment-seeking for cocaine-addiction, but defined by the M.LN.L. (Sheehan et al.,
1998), 6 patients had a diagnosis of alcohol dependence; 2 with alcohol abuse; 1 had
marijuana dependence; and 2 had marijuana abuse.Therefore, for inferences in this
initial connectome study, they are best-characterized as poly-substance abusers.

All subjects underwent full physical and psychological examinations. Severity
of drug dependence was assessed using the addiction severity index (ASI; McLellan
et al., 1980). Patients were not using medications that may cause sedation or are
known to modify brain dopamine systems during the previous 60 days; had no
cardiovascular, hematologic, hepatic, renal, neurological or endocrinological abnor-
malities; no history of head trauma or injury; no gambling problems; no history
of psychosis or organic brain syndrome unrelated to drug abuse; and no other
severe psychiatric disorders, with the exception of dependence on other substance
as described above. Patients had 4-8 days of residential stabilization prior to study
entry, during which they were drug-free, verified by urine drug screens. CTL were
notdependent on any substances including alcohol and nicotine. Drug craving scores
were recorded before the MRI scan using the Brief Substance Craving Scale (Somoza
etal., 1995).

2.2. MRI data acquisition

MR imaging was conducted in a 3-T whole-body scanner (Siemens, Erlan-
gen, Germany). High-resolution structural images were acquired for spatial brain
normalization using a 3D MPRAGE sequence (TR/TE/TI=1620/3/950 ms). rsfMRI
images were acquired using a gradient-echo echo-planar-imaging sequence with
parameters of: TR/TE=2s/30 ms, FOV =220 x 220 mm?, matrix =64 x 64 x 32, slice
thickness=4.5 mm. Participants were asked to lie still in the scanner at rest and
keep their eyes open. 180 images were acquired.

2.3. Image preprocessing

All data preprocessing was performed using SPM8
(http://www.fil.ion.ucl.ac.uk/spm) -based batch scripts (Wang et al, 2008)
with the following steps: motion correction, coregistration, and normalization.
Next, rsfMRI images were detrended to remove the linear and quadratic signal drift.
Head motion time courses, the mean cerebral spinal fluid (CSF) and mean white
matter signal were regressed out from each voxel’s time series (Fair et al., 2008).
The volume-to-volume displacement of each rsfMRI acquisition was calculated
using the method proposed in (Power et al., 2012). The mean displacement of all
acquisitions was taken as an indicator of the gross motion. A two-sample t-test
was performed and showed no significant motion difference between patients
and controls (p=0.25). To further reduce motion effects, acquisitions with a
volume-to-volume displacement >0.5 were excluded from further FCM analysis
(Power et al., 2012). The number of excluded images did not show significant
difference between the two groups (p=0.4). rsfMRI images were also filtered
using a passband of 0.01 Hz-0.08 Hz. No spatial smoothing was applied to prevent

introducing artificial correlations. The rsfMRI images were then registered into the
high-resolution structural images and subsequently into the MNI standard space
using SPM8 (Ashburner, 2007).

2.4. Anatomical parcellation

rsfMRI time series were extracted from the preprocessed images from 90 regions
(45 for each hemisphere, see Table 2 for the subdivision labels) as defined by
the automated-anatomically-labeled (AAL) brain template (Tzourio-Mazoyer et al.,
2002), which is widely used in FCM analysis(Achard et al., 2006). Since some of our
resting state fMRI acquisition did not cover the entire cerebellum, we did not con-
sider the cerebellum subdivisions in AAL during FCM analysis. The gravity center of
each subdivision was used as its surrogate node.

2.5. Network construction

Pearson correlation coefficients (CC) of rsfMRI time courses were calculated for
any pair of nodes. CC matrix was converted into a binary one using a threshold from
0.05t00.60 with a step of 0.01. The resulting binary matrix was used to build an undi-
rected graph model G of the brain network (Watts and Strogatz, 1998). To visualize
the FCM difference, a p <0.01 (corrected for multiple comparisons using the false dis-
covery rate (FDR) theory (Genovese et al., 2002) was used to find the corresponding
CC threshold for all subjects and the maximum of them (across all subjects) (which
was 0.26) was used as the final threshold to dichotomize the 90 x 90 CC matrix and
build the FCM.

FCM topological properties rely on the network density, which is reliant on the
connectivity strength. Populational connectivity difference may then affect topo-
logical FCM comparisons. To control network density difference, the CC matrix was
also thresholded to have the same network density (sparsity) and was used for the
subsequent FCM analysis. While sparsity thresholding would affect FCM properties
especially when it is high, a between-group comparison should still be valid if the
same threshold is used for both groups.

2.6. FCM measures

The following FCM measures (Rubinov and Sporns, 2010) were calculated using
the brain connectivity toolbox (www.brain-connectivity-toolbox.net/):

2.6.1. Cost. The number of connections to a node was counted as its degree. The
mean degree of all nodes reflects the density of a network.

2.6.2. Segregation measures. Segregation refers to splitting the brain into function-
ally specialized but densely interconnected sub-regions (a sub-group of nodes here).
Each such sub-group is referred to as a clique. The clustering coefficient of a node is
the fraction of its neighbors that are also neighbors of each other (Watts and Strogatz,
1998); the mean clustering coefficient C, of all nodes reflects the prevalence of local
clusters (“cliquishness”) of the network: 0 < G, < 1, with C, =1 meaning eachnode is
connected to all others. Local efficiency of a node is the average inverse shortest-path
length (Latora and Marchiori, 2001) between the node pairs in the node’s nearest
neighborhood. Mean local efficiency (mLE) of all nodes is related to Cj.

2.6.3. Measures of network integration. Integration means unifying different sub-
regions (a sub-group of nodes here) into a single functional entity and is usually
characterized with paths that connect distinct nodes (Rubinov and Sporns, 2010)
with shorter path representing stronger integration potential. The characteristic
path length L, is defined as the average shortest-path length between all pairs of
nodes in the network (Watts and Strogatz, 1998). A related integration measures is
the global efficiency (GE) Egiopa and is defined as the average inverse shortest-path
length (Latora and Marchiori, 2001).

2.6.4. Small-worldness is computed by comparing the real network to random networks
with the same number of nodes and average degree.
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Superscript “real” means from real data; “rand” means from random data.

(Humphries and Gurney, 2008; Watts and Strogatz, 1998). Random networks
were generated using the random rewiring procedure proposedin(Maslov and
Sneppen, 2002). Small-worldness measures the segregation and integration bal-
ance. A “small-world network” has o > 1, which is more clustered (with higher ;)
than random networks, but has approximately the same L, as that of a random
network (Watts and Strogatz, 1998).

2.7. Patient versus (vs) control comparisons

DRUG-CTL FCM difference was examined using two sample-t testing at each
threshold. Age was included as nuisance covariates.
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