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a b s t r a c t

We present well-calibrated, high-resolution maps of Saturn’s thermal emission at 2.2-cm wavelength
obtained by the Cassini RADAR radiometer through the Prime and Equinox Cassini missions, a period cov-
ering approximately 6 years. The absolute brightness temperature calibration of 2% achieved is more than
twice better than for all previous microwave observations reported for Saturn, and the spatial resolution
and sensitivity achieved each represent nearly an order of magnitude improvement. The brightness tem-
perature of Saturn in the microwave region depends on the distribution of ammonia, which our radiative
transfer modeling shows is the only significant source of absorption in Saturn’s atmosphere at 2.2-cm
wavelength. At this wavelength the thermal emission comes from just below and within the ammonia
cloud-forming region, and yields information about atmospheric circulations and ammonia cloud-form-
ing processes. The maps are presented as residuals compared to a fully saturated model atmosphere in
hydrostatic equilibrium. Bright regions in these maps are readily interpreted as due to depletion of
ammonia vapor in, and, for very bright regions, below the ammonia saturation region. Features seen
include the following: a narrow equatorial band near full saturation surrounded by bands out to about
10� planetographic latitude that demonstrate highly variable ammonia depletion in longitude; narrow
bands of depletion at �35� latitude; occasional large oval features with depleted ammonia around
�45� latitude; and the 2010–2011 storm, with extensive saturated and depleted areas as it stretched
halfway around the planet in the northern hemisphere. Comparison of the maps over time indicates a
high degree of stability outside a few latitudes that contain active regions.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The thermal emission from the gas giant planets was first ob-
served by single-antenna telescopes in the 1950s (Mayer et al.,
1958), and quantitatively related to fundamental atmospheric
properties in the following decade (Thornton and Welch, 1963;
Gulkis et al., 1969; Wrixon and Welch, 1970). Subsequent observa-
tions through the 1980s filled in the disk-temperature spectra of
Jupiter and Saturn through the millimeter- and centimeter-wave-
length range. This combined with advances in understanding the
high-pressure microwave absorption of ammonia, which possesses
a strong inversion band just longward of 1-cm wavelength, led to a
consistent story of deeply convective atmospheres with ammonia
as the dominant absorber (Gulkis and Poynter, 1972; Berge and
Gulkis, 1976; Klein and Gulkis, 1978). The whole disk spectrum
through the microwave region for Saturn led to a value for the deep

atmosphere mixing ratio of ammonia of about three times the solar
abundance, value consistent with previous work (de Pater, 1990;
Atreya, 2010), and our analysis in L13. The measured disk temper-
ature spectrum of Saturn may be found in de Pater and Massie
(1985) and van der Tak et al. (1999).

The advent around the same time of radio interferometers capa-
ble of using aperture synthesis to image the planets led to the first
microwave image of Saturn, reported by Schloerb et al. (1979)
using the interferometer Owens Valley Radio Observatory at 3.7-
cm wavelength. The completion of the National Radio Astronomi-
cal Observatory’s Very Large Array in New Mexico was followed
by a series of images of Saturn and its rings made with this instru-
ment reported by a number of authors at wavelengths ranging
from 2- to 21-cm wavelength (e.g., de Pater and Dickel, 1982,
1991; Grossman et al., 1989; Grossman, 1990). These studies have
resulted in a better understanding of Saturn’s rings and atmo-
spheric microwave spectrum, and have provided evidence of
large-scale structure in Saturn’s ammonia distribution including
variable broad bands in the midlatitudes. However, they have been
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limited by the capabilities of the VLA in spatial resolution and dy-
namic range for imaging extended objects, in addition to which the
process of Earth-rotational aperture synthesis used for imaging
averages out longitudinal structure. The theoretical capability for
the synthesized beam of the VLA in its largest (D) configuration
is 1.300 at 2-cm wavelength, providing spatial resolution on Saturn
comparable to that achieved here (1� latitude at the equator). How-
ever, results published to date show actual spatial resolutions
achieved to be 6� or greater in latitude (e.g., Grossman et al.,
1989; van der Tak et al., 1999; Dunn et al., 2002).

The presence of a microwave radiometer in orbit around Saturn
provides a unique opportunity to image Saturn with the advantage
of close range and without the limitations of a ground-based ap-
proach. In this paper we present global maps of Saturn obtained
over the course of the Cassini prime and equinox missions by the
radiometer that is incorporated into the Cassini RADAR instru-
ment. The emphasis in this paper is to describe the observations,
the mapping approach, and overall interpretations. We describe
the observational approach and calibration in the next section. In
Section 3 we concentrate on the generation of the maps and their
interpretation in terms of the ammonia distribution, followed by a
discussion of the nature and magnitude of residual errors in the
maps. We pay particular attention to the latter since the mapping
approach is unique. In Section 4 we offer a discussion and general
interpretation of the features seen in the maps, leaving a more de-
tailed discussion of the broader implications to a companion paper
by Laraia et al. (2013), henceforth referred to as L13.

2. Observations

2.1. The Cassini radiometer

The Cassini RADAR instrument includes a radiometer that ob-
tains measurements of externally generated (passive) radiation
entering the receiver in all operating modes of the instrument,
including the various radar modes during which internally-gener-
ated (active, or radar) signals are transmitted (Elachi et al., 2004;
West et al., 2009; Janssen et al., 2009). The overall characteristics
of the radiometer are given in Table 1. The RADAR instrument
operates in repetitive ‘‘burst’’ cycles, in which each cycle is divided
into active (radar transmit/receive) and passive (radiometer) seg-
ments. The radiometer segment employs a Dicke-switching tech-
nique in which the noise power received through the antenna is

compared with that from an internal reference blackbody termina-
tion using a microwave switch to select either the external (sky)
signal or an internal reference, using the comparison to stabilize
the sky signal. In general operation a second switch is used to se-
lect among an array of five antenna feeds; e.g., cycling through
these enable synthetic aperture radar observations to be obtained
in a wide swath. The duration of the transmit/receive period is
adjustable, as are the number and duration of the radiometer aver-
aging intervals. In the Saturn observations we used a 1-s duration
burst cycle in which the active segment was eliminated and the an-
tenna was set to the central (and smallest) radar beam, beam 3.
The radiometric segment was expanded to observe the target for
the entire 1-s period except for a 25 ms integration on the refer-
ence load in each cycle, These choices provided the beamwidth
and sensitivity given in Table 1.

2.2. Observational approach

The RADAR radiometer was used to observe Saturn during five
equatorial periapsis passes occurring between 2005 and 2011 for
the purpose of mapping its 2.2-cm thermal emission. The dates
and general orbital parameters for these observations are given
in Table 2, and details helpful for the interpretation of the maps
are given in Table 3. The observations were centered approxi-
mately on the periapsis of each pass in order to obtain the best
achievable spatial resolution, which is important given that the
0.36� beamwidth of the radiometer is large compared to the reso-
lutions of typical imaging instruments. Saturn presents a challenge
comparable to that of Titan for mapping and calibration – it is an
extended source that requires a large number of individual obser-
vations to build an image, each of which must be corrected for gain
and baseline drift as well as signal contamination by sidelobe con-
tributions. The approach developed for Titan for calibration and
sidelobe contribution removal was carried over directly to Saturn
and is described further below. The actual mapping strategy was
necessarily different than the raster scanning and long-term mosa-
icking approach used on Titan, however, because of the different
spacecraft trajectories relative to the target and Saturn’s rapidly
changing surface structure. Our approach for Saturn was to scan
repetitively from pole to pole through Saturn’s nadir as rapidly as
practical as the spacecraft moved along its trajectory through
periapsis, letting the motion of the spacecraft combined with Sat-
urn’s rotation provide the westward longitudinal component of the
scan. Each scan took from five to ten minutes depending on range,
during which time the subspacecraft longitude increased some-
what more than a beamwidth. This led to a spatial asymmetry in
sampling discussed further below. Fig. 1 shows both the scan pat-
tern of the beam axis in inertial space as it progressed with time,
and as a track on the surface of Saturn, where we take the Decem-
ber 2009 pass as an example (the underlying map is derived from
the data as described later in this paper). The gap at approximately
11 h (25� west longitude in the lower panel) was caused by the
need to unload the spacecraft momentum wheels. In the lower

Table 1
Nominal radiometer characteristics.

Frequency 13.78 GHz
Wavelength 2.18 cm
Polarization One linear
Radiometer bandpass 135 MHz
Measurement noise 0.026 K/

p
Hz

Beam full width
at half-power (beam 3)

0.36� Circular

Table 2
Mapping orbit characteristics.

Date Start time (UT) Segments Mapping
duration (h)

S/C orbit inclination
relative to Saturn (�)

Ring plane crossing
longitude (�W Lon.)

Periapsis

Distance (RS) Saturn longitude
(�W Lon.)

September 23, 2005 2005 SEP 23 11:15 3 22.78 0.32 � 2.002 298.3
October 13, 2009 2009 OCT 13 23:26 4 11.83 0.55 190.5 2.198 148.5
December 09, 2009 2009 DEC 09 22:58 2 13.94 0.50 18.1 2.220 313.9
July 24, 2010 2010 JUL 24 22:15 2 12.90 4.66 282.1 2.475 312.7
March 20, 2011 2011 MAR 20 04:03 1 14.08 0.38 � 3.722 257.8
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