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a b s t r a c t

This work focuses on determining the latitudinal structure of ammonia vapor in Saturn’s cloud layer near
1.5 bars using the brightness temperature maps derived from the Cassini RADAR (Elachi et al. [2004],
Space Sci. Rev. 115, 71–110) instrument, which works in a passive mode to measure thermal emission
from Saturn at 2.2-cm wavelength. We perform an analysis of five brightness temperature maps that
span epochs from 2005 to 2011, which are presented in a companion paper by Janssen et al. (Janssen,
M.A., Ingersoll, A.P., Allison, M.D., Gulkis, S., Laraia, A.L., Baines, K., Edgington, S., Anderson, Y., Kelleher,
K., Oyafuso, F. [2013]. Icarus, this issue). The brightness temperature maps are representative of the spa-
tial distribution of ammonia vapor, since ammonia gas is the only effective opacity source in Saturn’s
atmosphere at 2.2-cm wavelength. Relatively high brightness temperatures indicate relatively low
ammonia relative humidity (RH), and vice versa. We compare the observed brightness temperatures to
brightness temperatures computed using the Juno atmospheric microwave radiative transfer (JAMRT)
program which includes both the means to calculate a tropospheric atmosphere model for Saturn and
the means to carry out radiative transfer calculations at microwave frequencies. The reference atmo-
sphere to which we compare has a 3� solar deep mixing ratio of ammonia (we use 1.352 � 10�4 for
the solar mixing ratio of ammonia vapor relative to H2; see Atreya [2010]. In: Galileo’s Medicean Moons
– Their Impact on 400 years of Discovery. Cambridge University Press, pp. 130–140 (Chapter 16)) and is
fully saturated above its cloud base. The maps are comprised of residual brightness temperatures—
observed brightness temperature minus the model brightness temperature of the saturated atmosphere.

The most prominent feature throughout all five maps is the high brightness temperature of Saturn’s
subtropical latitudes near ±9� (planetographic). These latitudes bracket the equator, which has some of
the lowest brightness temperatures observed on the planet. The observed high brightness temperatures
indicate that the atmosphere is sub-saturated, locally, with respect to fully saturated ammonia in the
cloud region. Saturn’s northern hemisphere storm was also captured in the March 20, 2011 map, and
is very bright, reaching brightness temperatures of 166 K compared to 148 K for the saturated atmo-
sphere model. We find that both the subtropical bands and the 2010–2011 northern storm require very
low ammonia RH below the ammonia cloud layer, which is located near 1.5 bars in the reference atmo-
sphere, in order to achieve the high brightness temperatures observed. The disturbances in the southern
hemisphere between �42� and �47� also require very low ammonia RH at levels below the ammonia
cloud base. Aside from these local and regional anomalies, we find that Saturn’s atmosphere has on aver-
age 70 ± 15% ammonia relative humidity in the cloud region. We present three options to explain the high
2.2-cm brightness temperatures. One is that the dryness, i.e., the low RH, is due to higher than average
atmospheric temperatures with constant ammonia mixing ratios. The second is that the bright subtrop-
ical bands represent dry zones created by a meridionally overturning circulation, much like the Hadley
circulation on Earth. The last is that the drying in both the southern hemisphere storms and 2010–
2011 northern storm is an intrinsic property of convection in giant planet atmospheres. Some combina-
tion of the latter two options is argued as the likely explanation.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The instruments on board the Cassini orbiter have provided the
giant planets community with a plethora of data on Saturn’s
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atmosphere for the past decade. Ideally, we would like to get a
comprehensive picture of Saturn’s atmosphere that reconciles the
general circulation, the cloud and haze distributions and composi-
tions, the zonal wind profile, and the storm locations and dynam-
ics. One major observational roadblock is that the stratospheric
and upper tropospheric clouds and hazes on Saturn block our view
of the atmosphere beneath them.

The location and magnitude of the zonal jets at the cloud tops
are well known from Voyager measurements (Sánchez-Lavega
et al., 2000). The broad, strongly superrotating jet centered on
the equator is a distinctive feature, with alternating eastward
and westward jets to either side of the equator. Unlike Jupiter, con-
vection on Saturn appears in both westward and eastward jets (Del
Genio et al., 2009). Convective events on Saturn are intermittent,
and the cause of the intermittency is uncertain. Saturn electrostatic
discharges, or SEDs (Kaiser et al., 1983; Porco et al., 2005; Fischer
et al., 2006, 2007), have been observed in convective storms and
are indicative of lightning at depth. What causes these convective
outbursts on Saturn, and how do they contribute to or maintain the
general circulation? How does deep convection work on Saturn,
and how does it fit together with the latitudinal belt-zone struc-
ture of the giant planets? Answers to these questions have been
difficult to obtain. The 2.2-cm observations analyzed in this work
provide new data on the distribution of ammonia vapor in and be-
neath the ammonia clouds, and will help diagnose the atmospheric
dynamics at work inside the convective storms.

The structure of Saturn’s clouds and hazes is still being studied,
although the general features are understood. The equatorial zone
is a region of constant high clouds and thick haze, whereas the
midlatitudes (generally between ±20� and ±60�) are regions of
smaller, more variable clouds (West et al., 2009). The vertical
structure and composition of these clouds and hazes is not well
known, but Cassini observations made by the ISS (imaging science
subsystem), VIMS (Visual and Infrared Mapping Spectrometer) and
CIRS (Composite Infrared Spectrometer) instruments are closing
our knowledge gaps in these areas. Tied to the distribution of
clouds and hazes is the distribution of tropospheric gases, for
example ammonia and phosphine. How does the latitudinal distri-
bution of clouds, hazes, and tropospheric gases coincide with Sat-
urn’s belt-zone structure? Knowing the spatial distribution of
these gases can help us determine the dynamical mechanisms that
produce the spatial patterns themselves. For example, vertical mo-
tion, caused by either convection or large-scale meridional over-
turning, plays a key role in determining where clouds and hazes
will or will not form.

This work focuses on determining the latitudinal structure of
ammonia vapor in Saturn’s ammonia cloud layer using the bright-
ness temperature maps derived from the Cassini RADAR (Elachi
et al., 2004) instrument, which works in a passive mode to measure
thermal emission from Saturn at 2.2-cm wavelength. These maps
are presented in a companion paper by Janssen et al. (2013, this is-
sue), hereafter referred to as J13. The maps provide data on the
spatial distribution of ammonia vapor in the pressure range 1–2
bars, in the vicinity of the ammonia ice cloud. We believe these
maps provide information about Saturn’s meridional circulation.
The 2.2-cm data have better spatial resolution and sensitivity than
any other microwave data on Saturn. The calibration of Cassini’s
RADAR instrument, described in detail in Janssen et al. (2009)
and J13, is accurate and was validated using both Saturn and more
recent Titan observations as described in J13.

Section 2 describes the 2.2-cm observations and the radiative
transfer model used in our analysis. The brightness temperature
maps are described in Section 3. Section 4 compares the observa-
tions to the output from the radiative transfer model. Discussion
and implications for Saturn’s atmospheric dynamics are given in
Section 5, and conclusions are given in Section 6.

2. Observations and radiative transfer model

Cassini’s RADAR radiometer was used to map Saturn during five
equatorial periapsis passes occurring between 2005 and 2011. The
maps were formed from continuous pole-to-pole scans taken
through Saturn nadir during the periapsis passes, allowing the
rotation of Saturn to sweep the scan westward in longitude. The
observations and mapping are described in detail in J13 along with
the calibration and error analysis. We refer the reader to Section 2
of J13 for a description of the observations and observational ap-
proach, and to Section 3.2 of J13 for a description of the map-gen-
erating process.

The reference model used to calculate the residual brightness
temperature maps is also described in detail in Section 3.1 of J13.
The model and radiative transfer calculations were made using
the Juno atmospheric microwave radiative transfer (JAMRT, Jans-
sen et al., 2005, in preparation) program, which is in development
for the Juno Microwave Radiometer (MWR) experiment on Jupiter.
To match the RADAR observations, radiative transfer calculations
are carried out at 2.2-cm wavelength (13.78 GHz), and brightness
temperatures are output for each observation. This model builds
an atmosphere with user-prescribed physical parameters, such as
the vertical mixing ratio profiles of ammonia, phosphine and
water. Temperature and pressure profiles are calculated assuming
hydrostatic equilibrium using both wet and dry adiabats. The ref-
erence model assumes a moist adiabatic temperature profile with
100% relative humidity (RH), with a dry adiabatic profile below
cloud base, such that the temperature is monotonically decreasing
from the bottom to the top layer of the model atmosphere. The
adiabats include the contributions from the NH4SH and H2O
clouds, although the weighting function drops to essentially zero
before we reach the water cloud at great depth. A temperature of
134.8 K (Lindal et al., 1985) is specified at a pressure of 1 bar,
and the model temperature profile is slaved to this reference value.
We varied this value in order to test the sensitivity of the 2.2-cm
brightness temperature to variations in the 1-bar temperature,
and found the brightness temperature to be only minimally sensi-
tive to this reference value (see Section 5.1). The topmost level of
the model is the level at which the temperature reaches 110 K,
which is 560 mb for the (134.8 K, 1 bar) reference point. The model
assumes a completely transparent atmosphere above 110 K and
therefore ignores this region of the atmosphere. The deepest level
of the model atmosphere is 1000 bars, which is well below the
pressure level sensed by the 2.2-cm observations, and the vertical
layers are 100 m thick. The model also includes the emission angle
dependence (limb darkening) of the brightness temperature.

Table 1 gives the atmospheric constituents and their respective
abundances in the model atmosphere, including the values used
for the solar abundances. H2O, NH3, PH3, and H2S are the condens-
able gases (Atreya, 2010). H2S reacts with NH3 to form an NH4SH
cloud with a base around 5 bars. An ammonia ice cloud forms
above this, with a base around 1.5 bars. The water cloud is deeper
(base �10 bars) and out of the sensitivity range of the 2.2-cm

Table 1
Abundances of atmospheric constituents in the JAMRT program. Solar and enrichment
values are from Atreya (2010), who calculated solar abundances from the photo-
spheric values of Grevesse et al. (2005).

Constituent Solar abundance (relative to H2) Enrichment relative to solar

He 0.195 0.6955
CH4 5.50 � 10�4 9.4
H2O 1.026 � 10�3 3.0
NH3 1.352 � 10�4 3.0
H2S 3.10 � 10�5 5.0
Ar 7.24 � 10�6 1.0
PH3 5.14 � 10�7 7.5
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