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a b s t r a c t

Both deep zonal winds, if they exist, and the basic rotational distortion of Jupiter contribute to its zonal
gravity coefficients Jn for n P 2. In order to capture the gravitational signature of Jupiter that is caused
solely by its deep zonal winds, one must take into account the full effect of rotational distortion by com-
puting the coefficients Jn in non-spherical geometry. This represents a difficult and challenging problem
because the widely-used spherical-harmonic-expansion method becomes no longer suitable. Based on
the model of a polytropic Jupiter with index unity, we compute Jupiter’s gravity coefficients J2, J4,
J6, . . . , J12 taking into account the full effect of rotational distortion of the gaseous planet using a finite
element method. For the model of deep zonal winds on cylinders parallel to the rotation axis, we also
compute the variation of the gravity coefficients DJ2, DJ4, DJ6, . . . , DJ12 caused solely by the effect of
the winds in non-spherical geometry. It is found that the effect of the zonal winds on lower-order coef-
ficients is weak, jDJn/Jnj < 1%, for n = 2, 4, 6, but it is substantial for the high-degree coefficients with
n P 8.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

The Juno spacecraft, now on its way to Jupiter, will make high-
precision measurements of the gravitational field of the giant pla-
net (Hubbard, 1999; Bolton, 2005; Kaspi et al., 2010). Interpreta-
tion of these gravity measurements requires (i) an accurate
description of Jupiter’s gravitational field in its equilibrium under
the balance of self-gravity, internal pressure and strong rotational
effects for which the effect of rotational distortion can no longer be
treated as a small perturbation on a spherically symmetric state
and (ii) the possible effects of its alternating, cloud level zonal
flows on its gravitational field that are caused solely by the zonal
winds in non-spherical geometry. This represents a mathemati-
cally difficult and challenging problem since the simple spheri-
cal-harmonic-expansion method is no longer suitable.

The gravitational potential Vg in the exterior of a rotationally
distorted axially symmetric Jupiter can be expanded in terms of
the Legendre functions Pn,

Vgðr; hÞ ¼ �
GMJ

r
1�

X1
n¼2

Jn
Re

r

� �n

Pnðcos hÞ
" #

; r P Re; ð1Þ

where MJ is Jupiter’s mass, n takes even integers, (r, h,/) are spher-
ical polar coordinates with h = 0 being at the axis of rotation, J2, J4,
J6, . . . , are the zonal gravitational coefficients, Re is the equatorial ra-
dius of Jupiter, and G is the universal gravitational constant
(G = 6.67384 � 10�11 m3 kg�1 s�2). At present, only the first 3 zonal
gravitational coefficients J2, J4, J6 (see Table 1) are accurately mea-
sured (Jacobson, Jup230 orbit solution, http://ssd.jpl.nasa.gov/grav-
ity_fields_op). By circling Jupiter in a polar orbit, the Juno spacecraft
will carry out high-precision measurements of the gravitational
coefficients up to J12 (Bolton, 2005). The primary objectives of this
paper are twofold: (i) to obtain the zonal gravitational coefficients
up to J12 for a polytropic Jupiter without treating the effect of rota-
tional distortion as a small perturbation and (ii) to compute an
upper bound of the zonal wind effect on the gravitational coeffi-
cients of rotationally distorted Jupiter with non-spherical geometry.

Despite the fact that Jupiter’s zonal winds have been measured
and studied for a number of decades, their generation and mainte-
nance still remains highly controversial. There exist at least three
different views of the origin and the depth of the zonal winds.
One opinion is that they are generated by thermal convection
within the deep interior of the planet, representing the azimuthal
fluid motion that is nearly independent of distance parallel to the
rotation axis and extending through the whole interior (Busse,
1976). A second opinion is that the winds are powered by internal
heat via thermal convection, but they are only confined within the
planet’s outermost thin shell (about 10% of Jupiter’s radius)
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(Heimpel et al., 2005) because the effect of magnetic braking and
ohmic dissipation would limit their depth (Liu et al., 2008). The
third view is that the alternating zonal flow is largely confined to
a top thin layer of its stably stratified atmosphere (Ingersoll and
Cuzzi, 1969; Williams, 1976; Lian and Showman, 2010; Liu and
Schneider, 2010). Deep zonal winds of Jupiter, if they exist, can
generate an external gravitational signature by inducing density
anomalies (Hubbard, 1999) or by modifying the planet’s shape
(Kong et al., 2012).

By assuming that Jupiter is in hydrostatic equilibrium with a
polytropic index of unity and that it rotates differentially on cylin-
ders parallel to the rotation axis, Hubbard (1999) carried out the
first study of the effect of deep zonal winds on Jupiter’s gravity har-
monics in spherical geometry. By assuming that Jupiter’s zonal
winds are driven by the thermal wind mechanism, Kaspi et al.
(2010) solved the thermal–wind equation, based on the mean den-
sity model given by Guillot and Morel (1995), to determine the
gravitational anomalies caused by the zonal winds, also in spheri-
cal geometry. It should be pointed out that there are mathematical
limitations to the thermal–wind approach because the thermal
wind equation is mathematically degenerate and its solution is
known to be non-unique. The present study adopts the assumption
used by Hubbard (1999) that the zonal winds extend through the
whole interior of Jupiter, thus leading to an upper bound on the ef-
fect of the zonal winds on the gravitational coefficients.

Jupiter is rotating rapidly, resulting in significant departure
from spherical geometry: its eccentricity at the one-bar surface is
EJ ¼ 0:3543 (Seidelmann et al., 2007). Classical perturbation theo-
ries (Chandrasekhar, 1933; Zharkov and Trubitsyn, 1978) – which
are based on an expansion around spherical geometry using a
small rotation parameter – would find it difficult to reach the high
precision (Bolton, 2005) anticipated in Juno’s observations of Jupi-
ter’s gravitational field. As an alternative way of computing the
gravitational field of a rotationally distorted gaseous body, Kong
et al. (2013) developed a new three-dimensional numerical meth-
od for calculating the non-spherical shape and internal structure of
a rapidly rotating gaseous body with a polytropic index of unity.
Using a finite element mesh with 2 � 106 tetrahedral elements,
they obtained the first three gravitational coefficients J2, J4, J6 of
Jupiter that take into account the full effect of its rotational
distortion.

The objectives of the present study are twofold. By constructing
a perturbation expansion taking into account the full rotational
distortion, we investigate two problems related to Jupiter’s gravita-
tional coefficients. In the leading-order problem, we extend the
previous study of Kong et al. (2013) by carrying out the accurate
computation of the zonal gravitational coefficients J2, J4, J6 up to
J12 using a three-dimensional finite-element mesh in non-spherical
geometry with 32 � 106 tetrahedral elements. In the next-order
problem of the perturbation analysis, we compute the variations
of the gravitational coefficients, DJ2, DJ4, . . . , DJ12 caused by the
deep zonal winds on cylinders parallel to the rotation axis in
non-spherical geometry. It is significant that the two problems
are mathematically and physically coupled and inseparable.

Mathematically, the leading-order problem determines the equa-
tion of state, the shape of a rotationally distorted Jupiter and the
gravitational coefficient Jn based on which the next-order problem
can compute its variation DJn caused by the zonal winds. Physi-
cally, gravity measurements by the Juno spacecraft provide only
the total gravitational coefficients Jn + DJn. It follows that the values
of accurate Jn are required in order to identify their wind-related
variations DJn from the measured values Jn + DJn. In comparison
to the approach based on the thermal wind equation in spherical
geometry (Kaspi et al., 2010), the present approach is self-consis-
tent and mathematically marked by the uniqueness of its solution,
providing both accurate values of the gravitational coefficients Jn

and their wind-related variations DJn in non-spherical geometry.
We begin by presenting the governing equations in Section 2.

The numerical method is briefly discussed in Section 3 while the
results are discussed in Section 4 and some remarks are given in
Section 5.

2. Model and governing equations

Our model assumes that (i) Jupiter with mass MJ and equatorial
radius Re is isolated and rotating rapidly about the z-axis with an
angular velocity X0ẑ, (ii) Jupiter is axially symmetric and consists
of a compressible barotropic fluid (a polytrope of index unity)
whose density is a function only of pressure (Hubbard, 1999) and
(iii) the zonal winds with a typical speed U observed on the outer
surface of Jupiter represent the deep flows that depend only on dis-
tance s from the rotation axis and extend through the whole inte-
rior (Busse, 1976). In an inertial frame of reference, the fluid
motion u of Jupiter is described by

u ¼ X0½1þ �bXðsÞ�ẑ � r; ð2Þ

where � = U/(ReX0)� 1, r is the position vector and �X0
bXðsÞẑ � r

represents the deep zonal winds which can be derived from the ob-
served profile on Jupiter’s surface by extension along cylinders par-
allel to the rotation axis (Hubbard, 1999; Kaspi et al., 2010). With a
polytrope of index unity, the pressure (p)–density (q) relation in
Jupiter is assumed to be

p ¼ Kq2; ð3Þ

where K is a constant. In an inertial frame of reference, the equilib-
rium equations for a rotating gaseous Jupiter in an inviscid limit are

u � ru ¼ � 1
q
rp�rVg ; ð4Þ

r2Vg ¼ 4pGq; ð5Þ
r � ðuqÞ ¼ 0; ð6Þ

where u is given by (2) and Vg denotes the gravitational potential.
Eqs. (3)–(6) must be solved subject to the two boundary conditions

p ¼ 0 and Vg þ Vc

¼ constant at the bounding surface S of Jupiter; ð7Þ

Table 1
The second column gives the observed values, the third column is from the classical perturbation theory of Hubbard (1974) and the fourth to eighth columns show numerical
convergence of the zonal gravity coefficients Jn up to n = 12. Here kM denotes k � 106 tetrahedral elements in the spheroidal domain of our numerical computation. Recent
computation by Hubbard (2013) using 512 concentric Maclaurin spheroidal layers gives J2 = 13989 � 10�6, J4 = �531.87 � 10�6 and J6 = 30.12 � 10�6.

Observation Theory 2M 4M 8M 16M 32M

J2 +14696.43 +13930 +14909.60 +14909.59 +14909.59 +14909.59 +14909.59
J4 �587.14 �520 �559.07 �559.08 �559.08 �559.07 �559.08
J6 +34.25 +39 +29.89 +29.90 +29.90 +29.90 +29.90
J8 �1.817 �1.948 �1.950 �1.948 �1.949
J10 +0.541 +0.140 +0.144 +0.143 +0.144
J12 +0.236 �0.007 �0.012 �0.012 �0.011
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