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a b s t r a c t

This paper collects and corrects certain results on the radial velocity variations of stars in Trojan systems,
where two exoplanets separated by 60� of longitude share the same orbit. Radial velocity measurements
can seriously misjudge the masses and densities of planets in such systems.

I also derive a simple new method for combining tidal perturbations from two or more sources, such as
the tides raised on Earth by the Sun and Moon. This method then shows that the observable effects of
tides raised on stars by Trojan planets are also misleading. However, the combination of both tidal and
radial velocity measurements can determine the mass of each planet. I conclude with a discussion of pos-
sible scenarios for the formation of co-orbital exoplanets.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

In our Solar System, the planets Jupiter, Neptune, Mars, and
Earth share their orbits with certain asteroids, called ‘‘Trojans’’,
which librate in ‘‘tadpole’’ orbits about the Lagrange equilibrium
points L4 and L5, 60� ahead of and behind the planet, respectively.
Saturn’s classical moons Tethys and Dione each have two Trojan
companions as well, while its co-orbital satellites Janus and Epime-
theus describe mutual ‘‘horse-shoe’’ orbits around Saturn, which li-
brate about both L4 and L5 with large amplitude (see Murray and
Dermott, 1999).

Caton et al. (1999) (see also Davis et al., 2001) may have been
the first to consider the possibility of planets at the Trojan points
of a binary star system, and searched for transits of such exopla-
nets in eclipsing binaries. In contrast, Laughlin and Chambers
(2002) and Nauenberg (2002) considered the stability and Doppler
detectability of two planets of equal masses in a Trojan configura-
tion, as well as other 1:1 mean-motion resonances.

Goździewski and Konacki (2006) suggested that some Trojan
exoplanets (in particular, HD 128311 b & c and HD 82943 b & c)
might have been mistaken for pairs in 2:1 mean-motion reso-
nances, while Giuppone et al. (2012) found that co-orbital exopla-
nets could easily be confused with either single planets or 2:1
resonant pairs.

Dobrovolskis and Borucki (1996), Miralda-Escudé (2002), Agol
et al. (2005), Holman and Murray (2005), and Steffen and Agol
(2005) all realized that transit timing variations (TTVs) could re-
veal the presence of other planets in a transiting system. Later,
Ford and Gaudi (2006) (see also Ford and Holman, 2007; Narita

et al., 2007) derived the TTVs for a Trojan configuration of planets,
and used them to place upper limits on Trojan companions of two
transiting exoplanets. More recently, Madhusudhan and Winn
(2009) applied the TTV technique to place upper bounds on Trojan
companions of 25 such exoplanets.

This paper re-examines the detectability of Trojan systems from
the standpoint of the star’s reflex motion, and extends the theory
to the observable effects of tides raised by the planets on the star
(ellipsoidal variations). I conclude with a discussion of possible
scenarios for the formation of co-orbital exoplanets. An appendix
also derives an efficient new method for combining tidal perturba-
tions from two or more sources, analogous to the composition of
vectors.

2. Trojan systems

Consider the classic circular Three-Body Problem: three objects
(stars, planets, satellites, or some combination) of masses ma, mb,
and mc, all orbiting their mutual center of mass at the vertices of
an equilateral triangle of constant side r (see Fig. 1). It has long
been known that this configuration is a state of dynamical equilib-
rium, independent of the individual mass values (Lagrange, 1772).

I use G for the Newtonian constant of gravitation, and
M �ma + mb + mc for the total mass of the system. Then its orbital
mean motion, or angular speed, is

n0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=r3

q
: ð1Þ

The corresponding orbital period is P0 = 2p/n0. If mc = 0, for exam-
ple, note that Eq. (1) above reduces to Kepler’s third law
n2

0r3 ¼ G½ma þmb� from the more familiar two-body problem.
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2.1. Stability

The criterion for stability of the equilateral configuration is
more complicated:

mamb þmamc þmbmc < M2=27 ð2Þ

(Routh, 1875). In order to interpret this inequality, it proves conve-
nient to choose the greatest mass as ma (without loss of generality),
and to express formula (2) above in terms of two mass ratios. But
rather than the ratios mb/ma and mc/ma, or even mb/M and mc/M,
the stability criterion becomes simplest when expressed in terms
of l � (mb + mc)/M and f �mc/(mb + mc). This usage of l is fairly
conventional, and f was used also by Ford and Gaudi (2006), who
called it �. Note that by these definitions 0 6 l 6 2/3 and
0 6 f 6 1. In terms of these parameters, ma = (1 � l)M, mc = flM,
mb = (1 � f)lM, and criterion (2) above states that the equilateral
configuration becomes unstable when l equals or exceeds the crit-
ical value

l0 ¼ 2 27þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27½23þ 4f � 4f 2�

q� ��
: ð3Þ

The shallow solid curve in Fig. 2 (far left-hand scale) graphs l0

as a function of f from Eq. (3) above. Note that l0 is quite insensi-
tive to f, varying by only �1% as f ranges between 0 and 1. For f = 0,
mc vanishes, while mb vanishes for f = 1; in either case, l0 attains
its maximum value 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23=27

p� �
=2 � 0:03852 � 1=25:96, recov-

ering the classic result from the restricted case of the circular
Three-Body Problem. However, the general case of three non-zero
masses is slightly less stable, and l0 attains its minimum value

2� 2
ffiffiffiffiffiffiffiffi
8=9

p� �
=3 � 0:03813 � 1=26:23 for f = 1/2 (mb = mc; see also

Laughlin and Chambers, 2002).
For small displacements from equilibrium, the angle between

mb and mc librates (oscillates) about 60�, with a combination of
two periods: one slightly longer than the orbital period P0, and an-
other much longer. In the restricted case (f = 0 or 1), this longer
period becomes � 2P0=

ffiffiffiffiffiffiffiffiffi
27l

p
for small l, while both periods

approach P0

ffiffiffi
2
p

as l approaches its critical value l0 (Yoder et al.,
1983; Murray and Dermott, 1999; Nauenberg, 2002).

It is interesting to interpret this critical mass ratio l0 in terms
of the secondaries’ Hill spheres, roughly equivalent to their Roche
lobes. The Hill sphere sometimes also is called the ‘‘sphere of
influence’’, or ‘‘activity sphere’’, although both of these terms
properly refer to a different concept; see Danby (1962, p. 268).
The classic Hill sphere of a secondary of mass m at a distance r
from a primary of much greater mass ma is defined as the sphere
of radius

RH � r
m

3ma

� 	1=3

ð4Þ

centered on the secondary. It roughly describes the region in which
the gravitational attraction of the secondary dominates the tidal
perturbation from the primary.

Based on results from Gladman (1993), Chambers et al. (1996)
have defined a ‘‘mutual’’ Hill radius of two secondaries of masses
mb and mc at distances rb and rc from a primary of mass ma as

Rl ¼
rb þ rc

2
mb þmc

3ma

� 	1=3

: ð5Þ

See Smith and Lissauer (2009, 2010) for a slight improvement to
this definition; see also Salo and Yoder (1988), Hasegawa and Nak-
azawa (1990), Kokubo and Ida (1995, 1998), Ito and Tanikawa
(1999), Marzari and Weidenschilling (2002), and Chatterjee et al.
(2008). However, I expect that it would be more meaningful to
weight the distances by the masses, and to define the mutual Hill
radius as

Fig. 1. Geometry of a Trojan system. In this example, a star of mass ma and two
planets of masses mb and mc at the vertices of an equilateral triangle of side r are all
orbiting their mutual center of mass at X. The resulting reflex motion of the star is
the same as if it were accompanied by only a single planet of mass m+ < mb + mc at a
distance �r, but at an angle / from mb and 60� � / from mc.
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Fig. 2. Various functions of the parameter f. Solid curve (outer left-hand scale):
critical mass ratio l0 for stability of a Trojan system. Long-dashed hyperbola (inner
left-hand scale): normalized amplitude A of radial velocity variation. Short-dashed
hyperbola (inner left-hand scale): normalized amplitude T of tidal perturbation.
Dot-dashed curve: phase / of Doppler signal, in degrees (right-hand scale) or
radians (inner left-hand scale). Dotted curve: phase s of tidal perturbation, in
degrees (right-hand scale) or radians (inner left-hand scale). Note that A,T, and l0

are symmetric about the vertical mid-line f = 1/2, while / and s are point-
symmetric about f = 1/2, / = s = 30� = p/6 � 0.5236 radians; thus /(1 � f) = 60� � /
(f) and s(1 � f) = 60� � s(f).
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