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a b s t r a c t

Several studies have already considered the influence of tides on the evolution of systems composed of a
star and a close-in companion to tentatively explain different observations such as the spin-up of some
stars with hot Jupiters, the radius anomaly of short orbital period planets and the synchronization or
quasi-synchronization of the stellar spin in some extreme cases. However, the nature of the mechanism
responsible for the tidal dissipation in such systems remains uncertain. In this paper, we claim that the
so-called elliptical instability may play a major role in these systems, explaining some systematic fea-
tures present in the observations. This hydrodynamic instability, arising in rotating flows with elliptical
streamlines, is suspected to be present in both planet and star of such systems, which are elliptically
deformed by tides. The presence and the influence of the elliptical instability in gaseous bodies, such
as stars or hot Jupiters, are most of the time neglected. In this paper, using numerical simulations and
theoretical arguments, we consider several features associated to the elliptical instability in hot-Jupiter
systems. In particular, the use of ad hoc boundary conditions makes it possible to estimate the amplitude
of the elliptical instability in gaseous bodies. We also consider the influence of compressibility on the
elliptical instability, and compare the results to the incompressible case. We demonstrate the ability
for the elliptical instability to grow in the presence of differential rotation, with a possible synchronized
latitude, provided that the tidal deformation and/or the rotation rate of the fluid are large enough. More-
over, the amplitude of the instability for a centrally-condensed mass of fluid is of the same order of mag-
nitude as for an incompressible fluid for a given distance to the threshold of the instability. Finally, we
show that the assumption of the elliptical instability being the main tidal dissipation process in eccentric
inflated hot Jupiters and misaligned stars is consistent with current data.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Tides in extrasolar planetary systems

The search for planetary systems shows that a substantial frac-
tion of the observed stars hosts extrasolar planets. Methods of
detection, such as the radial-velocity method or the transit meth-
od, are most sensitive to large planets on close orbits. Conse-
quently, many known extrasolar planets have a mass comparable
to that of Jupiter and orbit very close to their host stars (Howard,
2010; Mayor et al., 2011). This population of planets, the so-called
hot Jupiters, currently includes about 25% of all known planets (see
exoplanets.org, exoplanets.eu). The increasing amount of
data on these systems leads to the possibility to test more precisely
the theoretical models of interaction between celestial bodies, such
as tidal or magnetic mutual influences (e.g. Cuntz et al., 2000; Gu

and Suzuki, 2009). Indeed, the permanent and systematic presence
of tides in binary systems leads to clear observational evidence of
their crucial roles (see the recent review of Mazeh (2007)). For in-
stance, the ellipsoidal effect or the apsidal motion (precession of
the line of apsides of a non-circular orbit, due to the mutual tidal
distortion in a binary system) are clear signatures of the tidal
deformations, whereas the tidally induced dissipation and angular
momentum exchanges control the orbital evolution of the system,
driving it toward a synchronized state on a circular orbit (exclud-
ing possible thermal tides, which can drive a planet away from
synchronism: e.g. Gold and Soter, 1969).

The role of tides has been recently investigated for systems
composed of a star and a close-in companion to tentatively explain,
for instance, the spin-up of stars with hot Jupiters (Pont, 2009;
Damiani and Lanza, 2010), the radius anomaly of short orbital per-
iod planets (Leconte et al., 2010a,b), and the synchronization or
quasi-synchronization of the stellar spin (Aigrain, 2008). Recent
observations have attracted our interest to reconsider the possible
consequences of an often neglected phenomenon: the so-called
elliptical instability.
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For instance, the star s Boo has a massive planet in close orbit
(4.5 MJup minimum mass and 3.31-day period), and a stellar surface
rotating synchronously with the planetary orbit (Butler et al.,
1997; Walker, 2008). It is possible that tides from the planet onto
the star have synchronized the thin convective zone of this F7 star,
since the mass ratio between the planet and the convective zone is
larger than 10 and the stellar angular momentum represents typi-
cally 60–70% of the total angular momentum. It has been possible
to reconstruct the global magnetic topology of the star since 2006
and its evolution using recurrent spectropolarimetric observations.
Two polarity reversals have been observed in 2 yr (Donati, 2008;
Fares, 2009), which represent an evidence for a magnetic cycle of
800 days, much shorter than the cycle of the Sun (22 yr). The role
of the planetary tides on the star in this short activity cycle was
questioned; a strong shear may take place at the bottom of the
convective zone, triggering a more active and rapidly evolving dy-
namo (Donati, 2008; Fares, 2009).

The spin–orbit misalignment (i.e. the angle between the stellar
spin axis and planetary orbit normal) of one third of transiting hot
Jupiters (Winn et al., 2010) also questions the role of tides in such
systems, since tides are responsible for alignment, circularization
of the orbit and synchronization of periods (or orbital migration,
if the stellar moment of inertia of the star is too large compared
to that of the planetary orbit). The usual idea of planet formation
and migration within a disk was also challenged by such observa-
tions. Elliptical instabilities may cause the rotational axis of both
bodies in the system to change orientation with time, with a rela-
tively short timescale. Misaligned systems could thus show unsta-
ble rotation axes of stars, rather than tilted orbital planes of the
planet. Tidal implications on the internal structure of planets were
already reported (Leconte et al., 2010a,b). However, the actual
mechanisms responsible for this dissipation are still a matter of de-
bate, especially considering the fact that most mechanisms predict
dissipation rates that are too weak compared to the one observed
in gaseous bodies. Quantifying the power generated by elliptical
instabilities (e.g. Le Bars et al., 2010, for a fluid layer of a terrestrial
body) is thus crucial to enhance the predictive ability of coupled
orbital/planet interiors models.

1.2. The elliptical instability

The elliptical instability is a generic instability that can affect
rotating fluids whose streamlines are elliptically deformed (see
the review by Kerswell (2002)). A three-dimensional flow may be
excited in the bulk of rotating fluid bodies when (i) the amplitude
of the elliptical forcing characterized by the ellipticity of the
streamlines b is sufficiently large compared to viscous dissipation
effects characterized by the Ekman number E and (ii) when a dif-
ference in angular velocity exists between the mean rotation rate
of the fluid and the elliptical distortion. In an astrophysical context,
the elliptical deformation has often been related to the gravita-
tional deformation of the fluid domain, coming from the static
and periodic terms of the tidal potential. The elliptical instability
has thus been suggested in tidally deformed accretion disks (Good-
man, 1993; Lubow et al., 1993; Ryu and Goodman, 1994; Balbus
and Hawley, 1998; Lebovitz and Zweibel, 2004) and tidally de-
formed stars (Rieutord, 2003). But note that such an elliptical dis-
tortion can also come from a rigid boundary which has been
deformed in the past and remains frozen in this deformed state,
as for instance the Moon mantle (Le Bars et al., 2011). Second, this
distortion can also come from a local vortex interaction in the
fluid: elliptical vortices present in accretion disks could then be
destabilized by the elliptical instability (e.g. Lesur and Papaloizou,
2009a,b; Lyra and Klahr, 2010). Third, the ellipticity of streamlines
may also appear spontaneously in rapidly rotating isolated fluid
bodies. To understand this less intuitive configuration, let us

consider a simple rotating homogeneous isolated fluid body. The
problem of the equilibrium figure of such a body has been first
solved by Newton (1687) in the case of small rotation rates, and
extended by Maclaurin (1742) to arbitrary rotation rates for sphe-
roidal figures of equilibrium. Jacobi (1834) showed that a class of
triaxial ellipsoids are also solutions of the problem (in this case,
the fluid rotates as a rigid body, which makes possible to omit vis-
cosity). It was shown later (Meyer, 1842; Liouville, 1846, 1855)
that the Maclaurin spheroids become unstable above a certain
deformation (Fig. 1), bifurcating into triaxial ellipsoids (see Lyttle-
ton (1953) for historical details). More specifically, denoting by a
and c the equatorial and polar radii, a dynamic instability appears
at c/a � 0.30, whereas the secular instability appears at c/a � 0.58,
where the triaxial Jacobi ellipsoid solutions branch on (in the limit
of circular equator). Adding an internal uniform vorticity leads to
consider two parts in the fluid velocity: an angular velocity of ri-
gid-body rotation, and a motion of uniform vorticity superimposed
on the latter. Each of these motions can be characterized by a
three-component vector (time-dependent, in the general case).
Riemann (1860) solved the general problem of the figures of equi-
librium in this case (ellipsoids in the zone between the uppermost
and the lowest solid black lines in Fig. 1), and discussed the stabil-
ity of the steady state solutions, which are now usually referred to
as the Riemann ellipsoids (see also Chandrasekhar (1969) for
details).

Naturally, the stability of triaxial ellipsoids with internal uni-
form vorticity is directly related with the elliptical instability.
However, the stability analysis of Riemann considers only pertur-
bations that are linear polynomials of space coordinates and the
energy criterion used by Riemann has been shown to be erroneous
by Lebovitz (1966): Riemann (1860) found that the unstable ellip-
soids for this perturbation are located between the solid blue line
and the black solid upper line in Fig. 1, whereas the correct unsta-
ble zone is actually smaller, given by the dark gray (blue) area in
Fig. 1, as shown by Chandrasekhar (1965, 1966) who considered
also other kinds of perturbations (e.g. quadratic perturbations,
which lead to unstable ellipsoids in the light gray (green) zone of
Fig. 1). The link with the elliptical instability has been made by
Lebovitz and Lifschitz (1996a,b), using a local analysis. These

Fig. 1. Riemann ellipsoids (for direct configurations, see Lebovitz and Lifschitz,
1996a), with a (resp. b) the longest (resp. shortest) equatorial axis and c the polar
axis. The Jacobi ellipsoids (red solid line) branch off the Maclaurin spheroids (gray
line, solid and dashed for stable and unstable spheroids respectively) at c/a � 0.58,
and the addition of an internal uniform vorticity extends the solutions domain to
the zone between the uppermost and the lowest solid black lines. For perturbations
that are linear in the spatial coordinates, Riemann obtained unstable ellipsoids
between the solid blue line and the black solid uppermost line, but Chandrasekhar
(1965) and Chandrasekhar (1966) showed that the correct unstable zone is the dark
gray (blue) one. The light gray (green) zone corresponds to unstable ellipsoids for
quadratic perturbations (e.g. Lebovitz and Lifschitz, 1996a). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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