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a b s t r a c t

An analytical model that describes the evolution of ring particles that are co-orbital with two larger
bodies on near-circular and near-planar orbits has been formulated. This can be used to estimate the life-
time of the particles within the ring. All the examples investigated, such as the Janus–Epimetheus (JE)
system, indicate that the particles should be removed from the co-orbital region within half a synodic
period (�4 years for JE). Numerical modelling confirms the predictions of the model. When the masses
are on eccentric orbits the particles remain within the co-orbital system for longer. Our results suggest
that the ring associated with Janus and Epimetheus must be continually fed with material, probably
by meteoroid impacts on the two satellites.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Analysis of the circular restricted three-body problem has pro-
duced insights that explain and predict many of the dynamical fea-
tures of the Solar System. The problem consists of a primary and
secondary mass moving around their common centre of mass on
circular orbits while a third object, a test particle, moves within
the system governed only by the gravitational attraction of the
two masses. When a rotating reference frame is applied to the sys-
tem, which has its origin at the centre of mass and rotates at the
same angular velocity as the two masses, five equilibrium points,
known as the Lagrangian points are obtained. When the mass of
the primary object is much larger than the mass of the secondary
object, all of these points lie close to the radius at which the sec-
ondary object orbits the primary (Danby, 1988; Roy, 1988; Murray
and Dermott, 1999).

The linear stability of the L4 and L5 triangular Lagrangian points
at low secondary: primary mass ratios ([0.0385 which means it is
valid for nearly all Solar System applications) allows the particle to
perform ‘tadpole’ orbits around each of these points (Murray and
Dermott, 1999). This motion is a combination of a long period mo-
tion of an epicentre librating around the triangular equilibrium
point and a short period motion of the particle moving around
the epicentre. The timescale of the latter motion is close to the
orbital period of the secondary object. When the eccentricity and

inclination of the particle’s orbit around the primary mass is zero,
the amplitude of the epicyclic motion is zero and the particle re-
mains at the epicentre (Murray and Dermott, 1999).

Increasing the radial separation between the epicentre’s path
and the triangular equilibrium point causes the path to become
more elongated around the radius of the secondary until it forms
the ‘critical tadpole’ path at which its ‘head’ and ‘tail’ have
azimuthal separations of 23.9� and 180� from the secondary
respectively (Murray and Dermott, 1999). Increasing the radial
separation further produces ‘horseshoe’ shaped orbits in which
the path fully encompasses the L3, L4 and L5 points. These had been
analytically predicted by Brown (1911) but had not been detected
within the Solar System until the discovery of Janus and Epime-
theus (Dollfus, 1966; Walker, 1966; Fountain and Larson, 1978;
Pascu, 1980; Pascu et al., 1980). Increasing the radial separation
further produces open epicyclic paths such as ‘non-symmetrical
horseshoe’ encounters and then chaotic motion as the particle
has close encounters with the secondary.

There are many examples within the Solar System of co-orbital
motion. Numerical integrations have indicated that some asteroids
have co-orbital orbits with the planets of the inner Solar System.
For example, the Asteroids 2002 VE68, 3753 Cruithne and 5261
Eureka perform co-orbital motion with Venus, Earth and Mars
respectively (Mikkola et al., 1994a,b; Michel, 1997; Wiegert
et al., 1997, 1998). An example of tadpole co-orbital motion are
the Trojan asteroids located near Jupiter’s L4 and L5 points. Further
examples of tadpole co-orbital motion are within the saturnian
system where Helene and Polydeuces librate around the L4 and
L5 points of Dione respectively (Lecacheux et al., 1980; Reitsema
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et al., 1980; Murray et al., 2005) while Telesto and Calypso are in
tadpole orbits co-orbital with Tethys (Seidelmann et al., 1981).
The dynamically-rich saturnian system is further enhanced by
the satellites Janus and Epimetheus which perform a variation of
horseshoe motion (Harrington and Seidelmann, 1981; Dermott
and Murray, 1981b). Within the radial locations of Janus and
Epimetheus a diffuse ring has been recently discovered (Porco
et al., 2006).

In ring systems, satellites can maintain co-orbital ring material.
For example, Pan maintains a ring within the Encke Gap of the
saturnian ring system (Porco et al., 2005). It is likely that the larg-
est bodies within a typical ring can similarly maintain co-orbital
ring material. If there are a number of bodies of similar mass lo-
cated at a similar semi-major axis within a ring, interesting
dynamical structures may be produced. All of these objects may
be able to ‘horseshoe’ off each other; we refer to this concept as
multiple horseshoe dynamics and it gives a possible explanation
for time variable rings found within the Solar System. For example,
Saturn’s F-ring can be modelled well by a precessing ellipse (Bosh
et al., 2002) and there is evidence of a number of large bodies con-
tained within it (Esposito et al., 2008; Murray et al., 2008; Beurle
et al., 2010).

Here we explore the stability of rings within a simple multiple
horseshoe system. First, a general horseshoe model is described
and investigated in Section 2. This will be used as a basis to gener-
ate an analytic model that calculates the trajectories of less mas-
sive additional objects that are contained within the horseshoe
region of the system in Sections 3 and 4. This model can be ulti-
mately used to calculate the dynamical lifetime of these particles
(Section 5). Examples of the evolution of possible horseshoe sys-
tems are given in Section 6. The Janus–Epimetheus system is inves-
tigated in Section 7 which gives insight on the age of the ring that
is associated with these satellites. Section 8 considers the case
when an additional object has mass.

2. The basic horseshoe orbit model

Unlike the restricted three-body problem, a more general horse-
shoe system consists of two bodies which may have similar mass,
m1 and m2 respectively (m1 P m2), orbiting a primary body of mass
M. In a reference frame that is rotating with the average angular
speed of the satellites, the epicentre of each satellite will move
along its own horseshoe path similar to that seen in Fig. 1. Note
that the figure is not to scale as the radial widths of the horseshoe
orbits have been greatly enlarged. As the object on the inner semi-
major axis catches up with the outer object, gravitational attrac-
tion causes the objects to ‘swap’ their approximate radial positions
around a barycentric semi-major axis (Namouni, 1999),

a ¼ a1m1 þ a2m2

m1 þm2
ð1Þ

where a1 and a2 are the semi-major axes of the two bodies m1 and
m2 respectively. This encounter places the original inner object on a
semi-major axis that is now larger than its co-orbital companion
causing it to recede from it (see Fig. 1).

Here we consider the eccentricities and inclinations of all the
bodies within the system to be zero such that the orbits follow
the paths of their individual epicentres. The rings and satellites
of the Solar System that are of interest generally have low eccen-
tricity (�10�3) and orbit within the same approximate plane so
this is an acceptable approximation for this initial analysis. As
the eccentricity is an adiabatic invariant of symmetrical horseshoe
motion (Hénon and Petit, 1986) all objects that undergo a symmet-
ric horseshoe encounter will have zero eccentricity after the
encounter. As we shall see, analysis shows that such a horseshoe
system can be defined by just three parameters. It should also be

noted that there is a close relationship between the epicentre path
and its associated zero-velocity curve (Dermott and Murray,
1981a).

Following a model similar to that used by Lissauer et al. (1985),
the two bodies have longitudes h1 and h2 with respect to a refer-
ence direction (see Fig. 2). The azimuthal extent of the orbits with-
in the rotating frame are defined by c1 and c2 while cmin is the
longitudinal minimum between the objects (see Fig. 1). When
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Fig. 1. A horseshoe system consists of two objects of mass m1 and m2 which orbit
around a primary body of mass M. The motion of the two bodies is shown in a
rotating reference frame in which the radial widths of the horseshoe orbits have
been artificially enlarged by a factor of 1000. The frame rotates at the average
angular speed of the satellites which is equivalent to the mean motion of an object
placed at the semi-major axis a (shown by the dashed circle). The minimum angular
separation between the satellites is cmin while c1 and c2 define the azimuthal extent
of the orbits within the rotating frame.

Fig. 2. The longitudes h1 and h2 (referred to a fixed direction) of the two mutual
horseshoeing bodies shown in Fig. 1. The relative longitude between the bodies is
defined to be h1,2 = h1 � h2.
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