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a b s t r a c t

In a body periodically strained by tides, heating produced by viscous friction is far from homogeneous.
The spatial distribution of tidal heating depends in a complicated way on the tidal potential and on
the internal structure of the body. I show here that the distribution of the dissipated power within a
spherically stratified body is a linear combination of three angular functions. These angular functions
depend only on the tidal potential whereas the radial weights are specified by the internal structure of
the body. The 3D problem of predicting spatial patterns of dissipation at all radii is thus reduced to
the 1D problem of computing weight functions. I compute spatial patterns in various toy models without
assuming a specific rheology: a viscoelastic thin shell stratified in conductive and convective layers, an
incompressible homogeneous body and a two-layer model of uniform density with a liquid or rigid core.
For a body in synchronous rotation undergoing eccentricity tides, dissipation in a mantle surrounding a
liquid core is highest at the poles. Within a soft layer (or asthenosphere) in contact with a more rigid
layer, the same tides generate maximum heating in the equatorial region with a significant degree-four
structure if the soft layer is thin. The asthenosphere can be a layer of partial melting in the upper mantle
or, very differently, an icy layer in contact with a silicate mantle or solid core. Tidal heating patterns are
thus of three main types: mantle dissipation (with the icy shell above an ocean as a particular case), dis-
sipation in a thin soft layer and dissipation in a thick soft layer. Finally, I show that the toy models predict
well patterns of dissipation in Europa, Titan and Io. The formalism described in this paper applies to dis-
sipation within solid layers of planets and satellites for which internal spherical symmetry and viscoelas-
tic linear rheology are good approximations.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Fifty years ago, William Kaula found that the heat dissipated by
tidal friction within the Moon is extremely nonuniform both radi-
ally and laterally (Kaula, 1963, 1964). At that time, nonuniform ti-
dal heating was a rather academic subject as these variations were
not observable: tidal heating in the Moon is indeed much smaller
than radiogenic heating. Spatial variations of tidal heating were
actually a byproduct of computing the total power dissipated in
the body, a key factor in modeling orbital evolution. Kaula’s calcu-
lations were based on the microscopic (or micro) approach to tidal
dissipation, which starts with the computation of viscoelastic tidal
strains. A bit earlier, Munk and MacDonald (1960) had given an
approximate formula for the total power dissipated by tides with
a macroscopic (or macro) approach. This alternative approach does
not require the computation of tidal strains: the tidal bulge lags the
tidal forcing by an angle parameterizing the viscous response.
Their formula, however, was limited to an incompressible homoge-

neous body, in contrast with the micro approach which is applica-
ble to any model of internal structure.

New theoretical developments had to wait until 1978, when
two papers significantly improved tidal heating computations.
First, Peale and Cassen (1978) reconsidered both macro and micro
approaches to tidal heating, correcting several errors in the various
formulas. They also mapped tidal heating variations for eccentric-
ity tides and obliquity tides, showing that tidal dissipation in a
homogeneous Moon is maximum at the poles in the former case
and at the equator in the latter. Furthermore they showed that
the presence of a large liquid core enhances dissipation in the man-
tle. Second, Zschau (1978) derived a simple formula for the total
dissipated power in a spherically stratified compressible body, in
which the influence of the body’s internal structure appears
through Im(k2), the imaginary part of the gravity tidal Love number
k2. Zschau’s formula was the first step toward reconciling the
macro and micro approaches, since k2 can be computed if the inter-
nal structure of the body is known. Tobie et al. (2005b) later ap-
plied the variational method to relate Im(k2) to the imaginary
part of the volume-integrated strain power. They also computed
the radial distribution of the dissipated power in terms of deforma-
tion functions that can be evaluated with standard methods for any
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spherically stratified model. I will show that the formulas of
Zschau (1978) and Tobie et al. (2005b) are recovered by spatially
averaging the local power obtained in the micro approach, thus
bridging the last gap between the macro and micro approaches.
My paper, however, is primarily about the angular distribution of
the dissipated power.

Spatial variations in tidal heating became relevant when space-
craft sent back incredible surface data showing that the Galilean
satellites Io and Europa undergo strong tidal deformations and
heating. Tidal heating was the only explanation for Io’s volcanism
(Peale and Cassen, 1978) but what was going on beneath the sur-
face was a mystery. Maybe the distribution of volcanoes could be
used in order to constrain the internal structure of the satellite?
Segatz et al. (1988) suggested that dissipation occurred either in
the whole mantle or mostly in a thin asthenosphere close to the
surface. These two models predict completely different patterns
of surface heat flux with maximum dissipation at the poles in
the former case and at the equator in the latter (a mix of the two
is of course possible). Galileo data have often been interpreted as
favoring the asthenospheric dissipation model though the issue re-
mains controversial (Lopes-Gautier et al., 1999; Tackley, 2001;
Kirchoff et al., 2011; Veeder et al., 2012; Hamilton et al., 2012).
Another idea consists in using long wavelength topography as an
indirect measure of the heat flux (valid if the topography is isostat-
ically compensated), but the promising analysis of Voyager data
(Ross et al., 1990) was not confirmed by Galileo measurements
(Thomas et al., 1998). Lateral variations of surface heat flux how-
ever also depend on the heat transport mechanism which could
be determinant.

On icy satellites like Europa, Titan and Enceladus, spatial varia-
tions of tidal heating are interesting for other reasons. In these
satellites, tidal heating can melt the ice at depth and create a global
subsurface ocean. The covering icy shell varies in thickness because
of spatial variations in tidal heating and solar insolation. Ojakangas
and Stevenson (1989a,b) computed icy shell thickness variations
on Europa with the aim of predicting nonsynchronous rotation
and polar wander. Nimmo et al. (2007) and Nimmo and Bills
(2010) used the same method to predict long wavelength topogra-
phy on Europa and on Titan, respectively. Variations of the
thickness of the icy shell (or more generally the lithosphere) also
influence surface tectonics (Beuthe, 2010).

Finally, spatial variations of tidal heating are important because
of their strong coupling to convection. Several convection models
have used as input tidal heating predicted by spherically stratified
models (Tackley, 2001; Tobie et al., 2003; Roberts and Nimmo,
2008). An important limitation of this approach is the neglect of
lateral viscosity variations on tidal heat production, which can be
taken into account by giving up the assumption of spherical sym-
metry and solving simultaneously for convection and tidal dissipa-
tion (Běhounková et al., 2010; Han and Showman, 2010). Chaos
terrain on Europa could be a visible result of spatially varying tidal
heating enhanced by a local drop in viscosity.

Until now, predicting spatial patterns of tidal dissipation meant
computing the dissipated power at every point within the body.
This laborious procedure obscures the link between the internal
structure and the resulting pattern, and makes it difficult to look
for all possible patterns generated by realistic internal structures.
In this paper, I show that the dissipated power at a given radius
within a spherically stratified body is the linear combination of
three basic patterns that depend only on the tidal potential. The
coefficients weighting the patterns depend are radial functions
which can be computed with standard methods developed for tidal
deformation problems once the internal structure of the body has
been specified.

I study the influence of the internal structure on dissipation pat-
terns by computing the dissipation weight functions in various toy

models without assuming a specific rheology. The toy models are
the thin icy shell above an ocean, the homogeneous body (relevant
to a completely solid body with little stratification or to a solid
core) and the incompressible two-layer body, either with a liquid
core or with rigid core, the latter case being relevant to dissipation
in a soft layer (such as an asthenosphere) above a more rigid layer.
It is well-known that dissipation patterns are completely different
if dissipation occurs in the deep mantle and in a thin astheno-
sphere. Besides these two classes of patterns, I show that dissipa-
tion in a thick asthenosphere leads to a third type of dissipation
pattern, with maximum heating at the equator as in astheno-
spheric dissipation but with a lower content in harmonic degree
four. Toy models predict well dissipation patterns within real
bodies though not their magnitude. I will give three examples of
this by computing dissipation weight functions for realistic inter-
nal structures of Europa, Titan and Io.

2. Dissipated power

2.1. Power, strains and tidal potential

In the micro approach to dissipation, the dissipated power
within the planet or satellite is expressed in terms of tidal strains
(this formula is derived in Appendix A and compared with other
expressions found in the literature). If tides operate at only one
angular frequency x, the dissipated power per unit volume aver-
aged over one orbital period is given by

P ¼ x Imð~lÞ ~�ij~��ij �
1
3
j~�j2

� �
þx

2
ImðeK Þj~�j2; ð1Þ

where ~l (resp. eK ) is the complex shear (resp. bulk) modulus, ~�ij is
the Fourier transform of the strain tensor and ~� is the trace of ~�ij.
All quantities implicitly depend on the frequency x and on the
point x within the planet where the power is evaluated. In this pa-
per, the tilde on viscoelastic parameters indicates that they are
complex and frequency-dependent (the tilde is dropped if the
parameters are purely elastic).

If there are several tidal frequencies, the total power averaged
over time is a sum over these frequencies (interferences vanish,
see Eq. (68)) so that it becomes essential to know the frequency
dependence of the viscoelastic parameters (i.e. the rheology).
Unfortunately the rheology of planetary bodies is poorly con-
strained (Jackson, 2007; Karato, 2008). Earth’s mantle has been
mainly studied at frequencies that are much higher (laboratory
experiments), moderately higher (seismic attenuation and seismic
anisotropy) or much lower (Chandler wobble and postglacial re-
bound) than tidal frequencies (Karato, 2010). It is indeed difficult
to determine Earth’s viscous response at tidal frequencies (e.g.
Benjamin et al., 2006; Nakada and Karato, 2012) and even more
so for other bodies. Maxwell rheology is often used in studies of ti-
dal dissipation because it is the simplest model in which the re-
sponse changes from elastic to viscous as the frequency
decreases. It is however not clear how the Maxwell viscosity is re-
lated to the true viscosity of the material (Ross and Schubert, 1986;
Bills et al., 2005; Sotin et al., 2009). Rheological models depending
on more parameters such as the Andrade model (Castillo-Rogez
et al., 2011) or the extended Burgers model (Nimmo et al., 2012)
could be more realistic. Moreover there has been a long-standing
debate on whether viscous deformations in Earth’s mantle are
mainly due to diffusion creep or to dislocation creep, correspond-
ing to a linear or nonlinear rheology, respectively (Karato and
Wu, 1993). In this paper, I assume that the rheology is linear with-
out being more specific about it except in applications to real
bodies for which I use the Maxwell model. Besides I consider only
the dominant tidal frequency; this restriction is appropriate for
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