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a b s t r a c t

Granular aggregates, like fluids, do not admit all manners of shapes and rotation rates. It is hoped that an
analysis of a suspected granular asteroid’s equilibrium shape and its structural stability will help confirm
its rubble-pile nature, and, perhaps, even constrain the asteroid’s material parameters. Equilibrium
shapes have been analyzed in the past by several investigators (Holsapple, K.A. [2001]. Icarus 154,
432–448; Harris, A.W., Fahnestock, E.G., Pravec, P. [2009]. Icarus 199, 310–318; Sharma, I., Jenkins, J.T.,
Burns, J.A. [2009]. Icarus 200, 304–322). Here, we extend the classical Lagrange–Dirichlet stability theo-
rem to the case of self-gravitating granular aggregates. This stability test is then applied to probe the sta-
bility of several near-Earth asteroids, and explore the influence of material parameters such as internal
friction angle and plastic bulk modulus. Finally, we consider their structural stability to close planetary
encounters. We find that it is possible for asteroids to be stable to small perturbations, but unstable to
strong and/or extended perturbations as experienced during close flybys. Conversely, assuming stability
in certain situations, it is possible to estimate material properties of some asteroids like, for example,
1943 Anteros.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

We are interested in testing the structural stability of freely-
rotating rubble-pile asteroids. The equilibrium shapes of these ob-
jects have been analyzed previously by Holsapple (2001) via limit
analysis, by Harris et al. (2009) who bound the surface’s maximum
slope by the local angle of repose, and by Sharma et al. (2009) uti-
lizing volume-averaging. At the same time, Richardson et al. (2005)
explored the equilibrium shapes of a collective of same-sized
smooth rigid spheres via a hard-particle discrete-element simula-
tion, while more recently Sanchez and Scheeres (2011, 2012) have
utilized soft-particle discrete element simulations to investigate
the equilibria and dynamics of granular aggregates in space.

Much work is available in the stability of rotating fluid ellip-
soids subjected to gravitational and tidal forces; see, e.g., Chandra-
sekhar (1969), Jeans (1961) and Lyttleton (1953). In contrast,
except for the recent work of Holsapple (2004), the stability of
spinning ellipsoidal granular aggregates has not been explored.
As we will see, typical stability tests employed for fluids do not car-
ry over in a straightforward manner, if at all, to the case of rubble-
piles on account of them being most conveniently modeled as non-
smooth materials; cf. Section 3. A stability test for rotating non-
smooth complex fluids was recently developed by Sharma

(2012), and we extend it to the case of granular aggregates. We will
utilize our stability test to investigate several near-Earth asteroids.
We also compare our approach with that of Holsapple (2004) at
Section 7.3’s end. Finally, we extend our analysis of local stability
under infinitesimal perturbations to include finite disturbances
via an approximate higher-order stability analysis.

In our analysis, we will model rubble-pile asteroids as homoge-
neous isotropic self-gravitating rigid-plastic ellipsoids, and, fur-
thermore, restrict ourselves to deformations that retain the
body’s ellipsoidal shape, i.e., homogeneous deformations. Sharma
et al. (2009), henceforth Paper I, derives relevant dynamical equa-
tions. For reasons discussed later, the stability of rotating bodies is
best tested from within a rotating coordinate system. Thus, we first
re-derive the governing dynamical equations below, separating out
the effects of an underlying rotating coordinate system.

2. Homogeneous dynamics in a rotating frame

Sharma (2012), henceforth Paper II, derives equations for a
homogeneously deforming ellipsoid in a rotating frame from first
principles. Here, for reasons of completeness and continuity, we
adapt the derivation of Paper I done in a fixed coordinate system
to a rotating frame.

We recall that during homogeneous deformation, the material
velocity

x
� ¼ LF � x; ð1Þ
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with x locating a material point, ð�Þ denoting the time derivative in a
fixed frame1 and LF being the motion’s velocity gradient that is spatially
homogeneous but possibly time-varying; here the subscript ‘F’ indicates
that the velocity gradient is with respect to a fixed frame. Equations
governing a homogeneously deforming ellipsoid free from surface
forces but experiencing the body force2 b are (Sharma et al., 2009):

LF

�
þL2

F

� �
� I ¼ ��rV þMT ; and ð2aÞ

I
�
¼ LF � I þ I � LT

F ; ð2bÞ

where �r is the volume-averaged stress tensor,

I ¼
Z

V
qx� xdV ; and ð3aÞ

M ¼
Z

V
qx� bdV ; ð3bÞ

being, respectively, the ellipsoid’s inertia tensor and external mo-
ment tensor, q and V are the ellipsoid’s density and volume, respec-
tively, and the tensor product (�) for any two vectors a and b is
defined in indical notation by (a � b)ij = aibj. The first equation above
follows LF’s evolution by balancing inertial forces, internal stresses
and self-gravitation, while the second describes the changing iner-
tia tensor. The inertia tensor I should be contrasted with Euler’s mo-
ment of inertia tensor frequently employed in dynamics; cf. (23).
Finally, we refer the reader to the Appendix of Sharma (2009) for
a short summary of relevant tensor algebra.

We now adapt the above formulae to a coordinate system O
rotating at a possibly time-varying rate x(t). It is helpful to intro-
duce the anti-symmetric tensor X(t) that satisfies

x� x ¼ X � x; ð4Þ

thus, x is X’s associated axial vector. We employ rotation rate vec-
tors, such as x, and their corresponding angular-velocity tensors, like
X, interchangeably. From, say, Lubarda (1999, p. 41), the rates of
change in O of a vector a and a tensor B may be related to their rates
of change in a fixed frame by, respectively,

a
� ¼ _aþX � a and B

�
¼ _BþX � B� B �X;

where now, and henceforth, ð_Þ indicates a time derivative in the
rotating frame O. Thus, if êi are unit vectors defining O, then
_a ¼ a

�

i
êi and _B ¼ B

�

ij
êi � êj. Viewing the homogeneously deforming

ellipsoid from within O, we may now rewrite (1) as

v ¼ _x ¼ L � x; ð5Þ

where v is the relative velocity of a material point in O and

L ¼ LF �X; ð6Þ

is the velocity gradient observed in the rotating frame O. Similarly,
the set (2) becomes

ð _Lþ L2Þ � I ¼ ��rV þMT � ð _XþX2 þ 2X � LÞ � I; and ð7aÞ
_I ¼ L � I þ I � LT : ð7bÞ

We note that the stress and moment tensors remain unaffected
by rigid body rotation, as does the form for I’s rate of change. In the
first equation, the bracketed three terms on the right-hand side
stem from, respectively, angular, centripetal and Coriolis’ accelera-
tions, and act in the rotating frame as external moment tensors.
The two equations above follow an ellipsoid’s motion as it deforms
homogeneously relative to the frame O according to (5).

The above two equations contain three unknown fields, viz., L; �r
and I. Thus, a closure equation is required. This is provided by

introducing a constitutive law. Given our interest in rubble-pile
asteroids, we will next introduce a rheology that describes these
granular aggregates.

3. Rheology

In the past, Sharma (2004, 2009, 2010) and Sharma et al. (2005,
2009) have modeled a rubble-pile’s constitutive response by that
of a rigid perfectly-plastic cohesionless material obeying a
Drucker–Prager yield criterion and an appropriate flow rule that
governed the material’s behavior post-yield. Paper I chose for
simplicity a non-associative flow rule that preserved volume during
plastic flow. Here we consider an associative flow rule;
non-associative rigid-plastic materials are typically trivially
secularly3 unstable, as we show in a later section.

We first quickly introduce the Drucker–Prager yield criterion
whose smoothness makes it amenable to three-dimensional dy-
namic problems. To formulate this rule, we define the pressure

p ¼ �1
3

trr; ð8Þ

and the deviatoric stress

s ¼ rþ p1: ð9Þ

The Drucker–Prager condition may now be written as

jsj2 6 k2p2; ð10Þ

where jsj is s’ magnitude given by

jsj2 ¼ sijsij;

utilizing the summation convention, and

k ¼ 2
ffiffiffi
6
p

sin /F

3� sin /F
; ð11Þ

in terms of the granular aggregate’s internal friction angle /F.
Employing the principal stresses ri, we have

jsj ¼ 1
3
fðr1 � r2Þ2 þ ðr2 � r3Þ2 þ ðr3 � r1Þ2g

¼ 2
3

s2
1 þ s2

2 þ s2
3

� �
; ð12Þ

where si = (rj � rk)/2, i – j – k are the principal shear stresses.
Therefore, jsj is a measure of the ‘total’ shear stress, and, conse-
quently, the yield criterion (10) limits the shear stress in terms of
the pressure and the internal friction angle. This internal friction
models the ability of an aggregate to support shear stresses, and
is traced to both the usual interfacial friction due to particle interac-
tion, as well as a geometric friction due to interlocking and rear-
rangement of finite-sized constituents. The latter is generally
dominant in dense aggregates, but decreases with lowering density.
Similarly, /F is greatly affected by confining pressure, with grain
crushing lowering /F when the confining pressure is 1 MPa or be-
yond. Typically dense soils at these confining pressures display /F

between 30� and 40�. We discuss soil behavior in more detail in
Section 7.1. In passing, it is worth mentioning the alternate Mohr–
Coulomb yield criterion wherein relation (10) is phrased in terms of
the greatest shear stress rather than jsj; see Chen and Han (1988,
Section 2.3.3, p. 88). This yield criterion was utilized by Holsapple
(2001, 2004). Sharma et al. (2005) and later Sharma et al. (2009)
showed that utilizing Drucker–Prager yield surface allowed for a
better match with simulations of Richardson et al. (2005). The re-
cent simulations of Sanchez and Scheeres (2012) confirm this latter
prediction.

1 We slightly modify Paper I’s notation for future convenience.
2 Force per unit mass. 3 Systems found stable by the energy criterion are secularly stable, cf. Section 5.2.
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