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Abstract

We propose a novel component to the understanding of the temperature structure of galaxy clusters which does not

rely on any heating or cooling mechanism. The new ingredient is the use of non-extensive thermo-statistics which is

based on the natural generalization of entropy for systems with long-range interactions. Such interactions include grav-

ity and attraction or repulsion due to charges. We explain that there is growing theoretical indications for the need of

this generalization for large cosmological structures. The observed pseudo temperature is generally different from the

true thermodynamic temperature, and we clarify the connection between the two. We explain that this distinction is

most important in the central part of the cluster where the density profile is most shallow. We show that the observed

pseudo temperature may differ up to a factor 2/5 from the true thermodynamic temperature, either larger or smaller. In

general the M–T and L–T relations will be affected, and the central DM slope derived through hydrostatic equilibrium

may be either more shallow or steeper. We show how the true temperature can be extracted correctly either from the

spectrum or from the shape of the Doppler broadening of spectral lines.
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1. Introduction

Galaxy clusters have been known and studied

for many years, and the radial dependence of clus-

ter temperatures is becoming a testing ground for

models of structure formation and for our under-
standing of gas dynamics. The emerging tempera-

ture profile is one where the temperature increases

from the centre to some maximum temperature,

and then decreases again for larger radii.

The central decrement has been much discussed

and the possibility of cooling flows has been

explained in excellent reviews, see (Fabian, 1994;
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Donahue and Voit, 2004) for references. From an

observational point of view this central tempera-

ture decrement is very well established (Allen

et al., 2001; Peterson et al., 2001; Kaastra et al.,

2004), and numerical simulations are now begin-
ning to see it too (Motl et al., 2004). The outer

temperature decrease is well established both

observationally (Markevitch et al., 1998; Kaastra

et al., 2004) and numerically (Loken et al., 2002;

Komatsu and Seljak, 2001).

The expected cooling flows are not observed in

galaxy clusters, and numerous explanations have

been proposed including various additional heat-
ing or lack-of-cooling mechanisms, see e.g. (Peter-

son et al., 2001; Donahue and Voit, 2004) for

references.

We will here propose a new element in the

understanding of cluster temperatures. Our solu-

tion has galaxy clusters in kinetic equilibrium, but

with temperatures defined through non-extensive

thermo-statistics which is the natural generaliza-
tion of normal statistical mechanics. The need

for non-extensive entropy arises when particle

interactions are not point-like, and includes grav-

ity and attraction/repulsion due to charges. These

are exactly the conditions for electrons and pro-

tons in galaxy clusters, as we will explain in

Section 4.

We will structure the paper as follows. First we
will consider the theoretical basis for statistical

mechanics with non-extensive entropy. To clarify

the signatures of non-extensive statistics, we will

apply the results to the Coma cluster. This is fol-

lowed by a discussion of reasons for using Tsallis

statistics, potential problems and implications of

our findings. Finally we offer our conclusions.

2. Tsallis statistics

Let us first consider the theoretical basis for sta-

tistical mechanics with non-extensive entropy. Sta-

tistical mechanics for classical gases can be derived

from the Boltzmann–Gibbs assumption for the en-

tropy, SBG ¼ �k
P

pi � ln pi, where pi is the proba-
bility for a given particle to be in the state i, and

the sum is over all states. For normal gases the

probability, p(v), coincides with the velocity distri-

bution function, f(v). This classical statistics can be

generalized to Tsallis (also called non-extensive)

statistics (Tsallis, 1988), which depends on the

entropic index q

Sq ¼ �k
X
i

pqi � lnqpi: ð1Þ

Here the q-logarithm is defined by, lnqp =

(p1 � q � 1)/(1 � q), and for q = 1 the normal

Boltzmann–Gibbs entropy is recovered, SBG = S1.

The probabilities still obey,
P

pi ¼ 1, while the
particle distribution function is now given by

f(v) = pq(v). Thus, for q < 1 one privileges rare

events, whereas q > 1 privileges common events.

For a summary of applications see (Tsallis,

1999), and for up to date list of references see

http://tsallis.cat.cbpf.br/biblio.htm.

Average values are calculated through the par-

ticle distribution function, and one e.g., has the
mean energy (Tsallis et al., 1998)

Uq ¼
P

pqi Ei

cp
; ð2Þ

where cp ¼
P

pqi , and Ei are the energy eigen-

values. Optimization of the entropy in Eq. (1) un-
der the constraints leads to the probability (Silva

et al., 1998; Tsallis et al., 2003)

pi ¼
1� ð1� qÞbq Ei � Uq

� �� �1=ð1�qÞ

Zq
; ð3Þ

where Zq normalizes the probabilities, bq = b/cp,
and b is the optimization Lagrange multiplier

associated with the average energy. Adding a con-

stant energy, �0, to all the energy eigenvalues leads

to Uq ! Uq + �0, which leaves all the probabilities,

pi, invariant (Tsallis et al., 1998). By defining

a ¼ 1þ ð1� qÞbqUq: ð4Þ

Eq. (3) can be written as

pi ¼
1� ð1� qÞðbq=aÞEi

� �1=ð1�qÞ

Z 0
q

; ð5Þ

and we see that the probabilities have the shape of

q-exponential functions

pi ¼
expq �b0

qEi

� �
Z 0
q

; ð6Þ
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