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We study the magnetic phase diagram within an extended half-filled Hubbard model, focusing on the
roles of the next-nearest-neighbor (NNN) and the next-next-nearest-neighbor (3rd NN) hoppings in the
magnetic configurations. We find that due to the spin frustration from the long range hopping and the
competition between long-range hopping and Coulomb correlation, the striped antiferromagnetic
(AFM) phase is stable when the NNN hopping is dominant, while the bicollinear AFM phase is robust
when the 3rd NN hopping is considerably large. The triple points are found in various magnetic phase
diagrams. Possible applications of the present theory on intermediately correlated LaFeAsO and
strongly correlated FeTe are discussed.
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1. Introduction

In a half-filled Hubbard model with only nearest-neighbor
(NN) hopping on a two-dimensional square lattice, the system
transits from paramagnetic (PM) metal to Néel antiferromagnetic
(AFM) insulating ground state when the electron correlation
exceeds a critical value [1-4]. The long range hopping may lead
to spin frustration in the correlated regime, as shown in recent
studies [5-8]: the increasing NNN hopping may drive the system
to transit from the Néel AFM insulator to the PM metal, or to a
striped AFM insulating state [9-11]. Such a theory was applied to
explain the striped AFM metallic ground state in LaFeAsO [5,8].
However, it has been shown [12-15] that LaFeAsO compound is a
correlated electron system. Whether the striped AFM metallic
phase found in the mean field approximation in Ref. [5] exXists or
not is questionable. And their theory is not self-consistent for
intermediate correlation regime. On the other hand, the ground
state of FeTe compound is found to be bicollinear AFM [16]. How
to understand these properties in the correlated electron scenario
is still a challenge.

In order to understand the effect of electron correlation on the
ground state magnetic properties of iron pnictides, especially the
role of the spin frustration from the long range hoppings, we use
the Kotliar-Ruckenstein slave-boson [17] (KRSB) mean-field the-
ory to study the magnetic phase diagram of an extended Hubbard
model at half filling at zero temperature. We find that the NNN
hopping favors a striped AFM state and the 3rd NN hopping favors
the bicollinear AFM state, showing that the magnetic phase diagram
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is more complex than expected, and the different magnetic ground
states of iron pnictides could be understood in the present theory.
The rest of the paper is organized as follows: in Section 2, we
present the model and the KRSB mean-field method. In Section 3,
we show our numerical results of the zero temperature phase
diagram. Finally, we summarize our results in Section 4.

2. Model Hamiltonian and methods

At present it is widely believed that the band structures and
the Fermi surface of iron pnictides should be multi-orbital
character [12]. Meanwhile the five orbitals are involved into the
low-energy physical process [18], suggesting that orbital symme-
try in iron pnictides is not seriously broken. In iron pnictides, six
electrons occupy five d-orbitals per iron, so the single orbital
model at half-filling is a good approximation. Under the frustra-
tion picture, as the first step to understand the properties of the
FeAs superconductivity, we start with the extended single-orbital
Hubbard model, which is given by
H=—t; Y ¢l co+ta Y clotts > clco+UD myymy, (1)
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where tq,t,,t3 are the NN, NNN and 3rd NN hopping terms defined
by overlap integral, respectively, ci*a is the creation operator for an
electron on site i with spin g, ¢;, is the annihilation operator for
an electron on site i with spin g, n;, is the number operator, and
U is the on-site repulsion interactions.

To understand the electronic correlation in iron pnictides, the
many-body Gutzwiller variational approach, slave spin/rotor method
and the dynamical mean-field approach have been applied to various
modified Hubbard models [19,20]. However, to explain the complex
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magnetic ground states of iron pnictides with variable correlation
strength and electron doping concentration, the KRSB method is a
proper technique, in addition to the Gutzwiller variational method.
The slave-boson or auxiliary-boson formulation is first proposed by
Barnes [21] and rediscovered and extended by Coleman [22], Read
and Newns [23] in their work on the mixed-valence problem. It has
so far been mainly used to treat the infinite correlation case through
replacing the infinite correlations by a local constraint which is then
treated by the standard field-theoretical methods. Later, Kotliar and
Ruckenstein extended such a collective boson approach to any value
of the correlation U, hence it is suitable for handling various magnetic
configurations, magnetic phase transitions and the metal-insulator
transitions (MIT). Next, we use KRSB mean-field method to deal with
the Hubbard model and calculate the ground state energy of the
magnetic structure.

The wavefunctions of [0, [1>,|] >, |1 consist of a set of
complete orthonormalized basis for each site. Within the KRSB
approach, the collective bosons e/, p (6 =1,]), d] act as projec-
tion operators onto the empty, singly occupied with spin up and
spin down, and doubly occupied electronic states at each site,
respectively. At the meantime, making use of the completeness
condition, we can obtain

> plpiot+elei+didi=1 @
g

Particle conservation condition is given by
Nig :fll(;' io :qupiﬂ +dj-dl (3)

We can obtain the chemical potential from the particle conserva-
tion conditions,

/N Srofio> =1+ )
ko
where x is the doping density, here we let x=0 be the half-filling

case. We can transform the particle representation to the occupa-
tion representation using slave-boson method
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with
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So the effective Hamiltonian is
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In the mean-field approximation, we have the boson probabilities

(Pl = <Pig> =P1. P> = {Pig> =P2

Cefy=<eiy=eq, <d>=<di>=do ®)

and the magnetic moment is defined as

m=n;—n, ®)
Within this approximation, we can calculate the groundstate

energy to find the lowest magnetic ordered phase, and obtain the
magnetic moment, density of states, etc.

3. Numerical results

We use the KRSB mean-field theory to obtain the magnetic
phase diagram of the extended Hubbard model at half filling at
zero temperature. First, we consider the effect of the NN and the
NNN hoppings so as to uncover the formation of striped AFM
state. In the further study, we add the 3rd NN hopping to discuss

the competition of different hoppings (t;, t; and t3) and the origin
of bicollinear AFM state.

3.1. Striped antiferromagnetic phase

In the absence of the 3rd NN hopping, we find that at finite NNN
hopping t,, e.g. t;/t; =0.76, the energies of the striped and Néel
AFM states are rather close. With the increase of the Coulomb
interaction, the system transits from paramagnetic (PM) to striped
AFM states at U, and then to Néel AFM state at U, Further
increasing U leads the system to undergo from Néel to reenter the
striped AFM phase at Uy, as seen from the energy comparison shown
in Fig. 1.

The electronic correlation plays a crucial role in the magnetic
moment and electronic states, as shown in Fig. 2. The correlation
dependence of the sublattice magnetic moment in Fig. 2(a) has
two transitions at U;/t; =4.93 and U,/t; =6.3. The former is a
critical point for the PM-striped AFM phase transition in the
metallic phase, and the latter corresponds to the metal-insulator
transition. This can be seen from the density of states (DOS). In
Fig. 2(b), the DOS show that there are plenty of electronic states at
the Fermi surface for U =4.0t; < U;, the system is a PM metallic
state. Around the first transition at U=5.0t;, with plenty of
electronic states at the Fermi surface, the system is a striped AFM
metallic state; around the second transition at U =8.0t; > U,,
with few electronic states near the Fermi surface, the system is in
the striped AFM insulating state. Therefore, the first critical
point corresponds to the magnetic transition and the second one
to the MIT, and the magnetic transition does not coincide with
the MIT.

By comparing the total energies of the PM, Néel AFM, striped
AFM and bicollinear AFM states, we have obtained the slave-boson
mean-field phase diagram of the extended Hubbard model at half
filling in Fig. 3. In the strong coupling limit, U > t; and U > t,, both
the striped and the Néel AFM states are insulating since the lower
Hubbard band is fully occupied and the upper Hubbard band is
empty. In the opposite limit, U < t; and U < t,, the ground state is a
PM metallic state. When the NNN hopping is finite, the electronic
spins are frustrated in the strongly correlated regime. It is well
known that when there is only NN hopping, the ground state is the
Néel AFM state. As t,/t; increases, the magnetic configuration
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Fig. 1. Comparison of the total energies of PM, striped AFM and Néel AFM states at
t;/t1 =0.76 and t3/t; =0. Es, E, and E, denote the total energies of striped AFM,
Néel AFM, and PM states, respectively.
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