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a b s t r a c t

The nature (time variation) of response magnetization m(wt) of the spin-1 Blume–Capel model in the

presence of a periodically varying external magnetic field h(wt) is studied by employing the effective-

field theory (EFT) with correlations as well as the Glauber-type stochastic dynamics. We determine the

time variations of m(wt) and h(wt) for various temperatures, and investigate the dynamic magnetic

hysteresis behavior. We also investigate the temperature dependence of the dynamic magnetization,

hysteresis loop area and correlation near the transition point in order to characterize the nature (first-

or second-order) of the dynamic transitions as well as obtain the dynamic phase transition

temperatures. The hysteresis loops are obtained for different reduced temperatures and we find that

the areas of the loops are decreasing with the increasing of the reduced temperatures. We also present

the dynamic phase diagrams and compare the results of the EFT with the results of the dynamic mean-

field approximation. The phase diagrams exhibit many dynamic critical points, such as tricritical (�),

zero-temperature critical (Z), triple (TP) and multicritical (A) points. According to values of Hamiltonian

parameters, besides the paramagnetic (P), ferromagnetic (F) fundamental phases, one coexistence or

mixed phase region, (FþP) and the reentrant behavior exist in the system. The results are in good

agreement with some experimental and theoretical results.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

The hysteresis properties (hysteresis area, coercivity and rema-
nence) are very important in the magnetic recording media [1]. Real
magnetic recording media quality tests and their relationship to the
hysteresis based methods can be found in Ref. [2]. Magnetic hyster-
esis properties have a crucial technological importance for the
ferromagnetic thin films. For example, one may control the films’
thickness to obtain magnetic hysteresis at a right shape to suit
desired technological purpose. Recently, the hysteresis loop of the
Ising model [3], the ferromagnetic thin films [4] and the
ferromagnetic–antiferromagnetic (Ni/FexMn1�x) bilayers [5] has been
studied experimentally and theoretically. There are also some experi-
mental efforts to study the scaling behavior of the hysteresis loop
area [6,7]. Other examples of hysteresis include electrochemical
adsorbate layers [8], liquid crystalline systems [9], superconducting
materials [10], molecular-based magnetic materials [11], soft mag-
netic nanowires [12], etc.

On the other hand, the dynamic phase transition (DPT) was
first found in a study, within a mean-field approach, which is the

kinetic spin-1/2 Ising model under a time-dependent oscillating
field [13], using a Glauber-type stochastic dynamics [14]. Kinetic
spin-1/2 Ising model was also investigated by Monte Carlo
simulation [15–18], which allows the microscopic fluctuations,
as well as further mean-field studies [19]. Moreover, Tutu and
Fujiwara [20] developed the systematic method for getting the
phase diagrams in DPTs, and constructed the general theory of
DPTs near the transition point based on mean-field description,
such as Landau’s general treatment of the equilibrium phase
transitions. The DPT has also been found in a one-dimensional
kinetic spin-1/2 Ising model with boundaries [21]. In the last
decade, researches on the DPT are widely extended to more
complex systems such as vector type order parameter systems,
e.g., the Heisenberg-spin systems [22], XY model [23],
Ziff–Gulari–Barshad model for CO oxidation with CO desorption
to periodic variation of the CO pressure [24], the two-dimensional
Hubbard model subject to bias voltages from the electrodes
coupled to the system [25], higher spin systems such as spin-1
[26,27], spin-3/2 [28], etc. mixed-spin Ising systems, e.g., with
spins (1/2, 1), with spins (1/2, 3/2), with spins (1, 3/2), with spins
(2, 5/2), etc. [29] and metamagnet systems [30]. Finally, we
should also mention that experimental evidences for the DPT
have been found in many physical systems, such as highly
anisotropic (Ising-like) and ultrathin Co/Cu(0.01) ferromagnetic
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films [6], amorphous YBaCuO films [31], ferroic systems (ferro-
magnets, ferroelectrics and ferroelastics) with pinned domain
walls [32], cuprate superconductors [33], polyethylene naphtha-
late (PEN) nanocomposite [34] and ultrathin [Co/Pt]3 magnetic
multilayers [35].

In this paper, we study the nature (time variation) of response
magnetization m(wt) of the spin-1 Blume–Capel model in the
presence of a periodically varying external magnetic field h(wt) by
employing the effective-field theory (EFT) with correlations under
the Glauber-type stochastic dynamics. From these studies, we
determine the m(wt)–h(wt) or hysteresis loops, and investigate the
dynamic magnetic hysteresis behavior. The temperature depen-
dence of the dynamic magnetization, hysteresis loop area and
correlation is investigated to characterize the nature of the dynamic
transitions as well as obtain the dynamic phase transition tempera-
tures. We also calculate the dynamic phase diagrams and compare
the results of the EFT with the results of the dynamic mean-field
approximation [26].

The rest of this paper is organized as follows. In next section, we
briefly describe the model and obtain the dynamic effective-field
equations using the Glauber transition rates in the presence of a
time-varying magnetic field. In Section 3 we present the numerical
results and discussions. Especially, we investigate and discuss the
time variation of response magnetization, dynamic magnetic hys-
teresis behavior and the thermal variation of dynamic magnetiza-
tion, hysteresis loop area and correlation, respectively. Finally, the
paper ends with a summary and conclusion in Section 4.

2. Model and derivation of dynamic effective-field equation

The spin-1 Ising model with a crystal field interaction or
single-ion anisotropy is often called the Blume–Capel (BC) model,
was first introduced by Blume [36] and independently by Capel
[37]. The model has been the subject of many theoretical studies
since its introduction [36,37] more than 40 years ago, because it
plays a fundamental role in the multicritical phenomena asso-
ciated with various physical systems, such as multicomponent
fluids, ternary alloys and magnetic systems. It also exhibits
variety of critical and tricritical phenomena. These studies were
done by the well known methods in equilibrium statistical
physics such as the effective-field theory (EFT), the mean-field
approximation (MFA), the cluster variation method (CVM), the
Monte Carlo (MC) simulation and renormalization group techni-
ques ([38] and references therein). The nonequilibrium properties
of the model have also been studied in Ref. [26,39,40].

The Hamiltonian of the BC model is given by

H¼�Jij

X
/ijS

SiSj�D
X

i

S2
i �hðtÞ

X
i

Si, ð1Þ

where the Si takes the value 71 or 0 at each site i of a lattice and
/ijS indicates a summation over all pairs of nearest neighbor
sites. Jij is the bilinear exchange interaction parameter, D is
the crystal field interaction or single-ion anisotropy, and h(t)
is a time-dependent external oscillating magnetic field and is
given by

hðtÞ ¼ h0 sinðwtÞ, ð2Þ

where h0 and w¼2pv are the amplitude and the angular frequency
of the oscillating field, respectively. The system is in contact with
an isothermal heat bath at an absolute temperature T.

Now, we use the EFT with correlations to obtain the dynamic
EFT equation for the model. This method was first introduced by
Honmura and Kaneyoshi [41] and Kaneyoshi et al. [42], which is a
more advanced method dealing with Ising systems than the MFA,
because it considers more correlations. Within the framework of

the EFT, one finds that

/Sk
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i ¼ 1

ð1þSi sinhðJ rÞþS2
i ½coshðJ rÞ�1�Þ

* +
f kðxþhÞ9x ¼ 0, ð3Þ

where r¼ @=@x is a differential operator, z denotes the nearest-
neighbor sites of the central site i and z¼4 for the square lattice.
The functions fk(xþh) are defined by

f 1ðxþhÞ ¼
2 sinh½bðxþhÞ�

2cosh½bðxþhÞ�þexpð�bDÞ
, ð4Þ

f 2ðxþhÞ ¼
2 cosh½bðxþhÞ�

2 cosh½bðxþhÞ�þexpð�bDÞ
, ð5Þ

where b ¼ 1=kBT , kB is the Boltzman factor. Eq. (3) is also exact
and is valid for any lattice. If we try to exactly treat all the spin–
spin correlations for that equation, the problem quickly becomes
intractable. A first obvious attempt to deal with it is to ignore
correlations; the decoupling approximation:

/SiS
2
i0 . . .S

2
inSffi/SiS/S2

i0S. . ./S2
inS, ð6Þ

with ia i0a . . .a in has been introduced within the EFT with
correlations [41,43,44]. In fact, the approximation corresponds
essentially to the Zernike approximation [45] in the bulk problem,
and has been successfully applied to a great number of magnetic
systems including the surface problems [42,44,46]. On the other
hand, in the mean-field theory, all the correlations, including the
self-correlations, are neglected. Based on this approximation,
Eq. (3) is reduced to

m¼/SiS¼ ½1þ/SiSsinhðJrÞþ/S2
i SðcoshðJrÞ�1Þ�4f 1ðxþhÞ9x ¼ 0,

ð7Þ

q¼/S2
i S¼ ½1þ/SiSsinhðJrÞþ/S2

i S ðcoshðJ rÞ�1Þ�4f 2ðxþhÞ9x ¼ 0:

ð8Þ

As one can see, in our effective-field treatment there naturally
appears new order parameter q, which one is able to evaluate.
This is not the case of the standard MFA, where all correlations are
neglected. This is one of the reasons why the present framework
provides better results than the standard MFA.

Expanding the right side of Eq. (7), one can obtain the
following equation:

m¼
1þ4sinhðJrÞmþð�7þ4coshðJrÞþ3coshð2JrÞÞm2þ � � �

þ 1
16 ð70þ112coshðJrÞþ56coshð2JrÞ�sinhð4JrÞÞm8

" #
f 1ðxþhÞ9x ¼ 0, ð9Þ

When trigonometric expression is converted to exponential
expression, Eq. (9) is reduced to following one:
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Now, employing a mathematical relationexpðarÞf 1ðxÞ ¼ f 1ðxþaÞ,
where r¼ @=@x is a differential operator, Eq. (10) obtained as follow,
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or Eq. (11) is reduced the following form:

m¼ a0þa1mþa2m2þa3m3þa4m4þa5m5þa6m6þa7m7þa8m8:

ð12Þ
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