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a b s t r a c t

A number of mixing rules are proposed in the literature to predict the dependence of effective material

parameters (permittivity and permeability) of composites on frequency and concentration. However,

the existing mixing rules for frequency dependence of permeability in magnetic composites typically

do not provide satisfactory agreement with measured data. Herein, a simple mixing rule is proposed. Its

derivation is based on the Bergman–Milton spectral theory. Both the Bruggeman effective medium

theory and the Maxwell Garnett approximation are included as particular cases of the proposed mixing

rule. The derived mixing rule is shown to predict accurately the frequency dependence of permeability

in magnetic composites, which contain nearly spherical inclusions.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Many composite magneto-dielectric materials have been
developed recently for various applications in radio frequency
and microwave electronic devices [1–7]. Prior to engineering
composites with desirable electromagnetic properties, it is impor-
tant to predict wideband frequency responses of their effective
material parameters, specifically, permittivity ee and permeability
me, as functions of the concentration p, permittivity ei and
permeability mi of inclusions, and permittivity eh and permeability
mh of the host matrix.

The effective permittivity and permeability of a composite are
conventionally assumed to be governed by the same mixing rule.
A number of mixing rules have been proposed in literature,
e.g., [8]. The most commonly used mixing rules are the Maxwell
Garnett approximation (MGA)

b�1

1þn0ðb�1Þ
¼ p

a�1

1þn0ða�1Þ
, ð1Þ

and the Bruggeman effective medium theory (EMT)

p
a�b

bþ1þn0ða�bÞ
þð1�pÞ

�b
bþ1�n0b

¼ 0: ð2Þ

In Eqs. (1) and (2), the parameters a¼ei/eh�1 or mi/mh�1 and
b¼ee/eh�1 or me/mh�1, are the normalized dielectric and mag-
netic susceptibilities of inclusions and composite, respectively.

The parameter n0 is the form factor (depolarization or demagne-
tization factor), the same for both the permittivity and perme-
ability of a particular composite. Eqs. (1) and (2) are formulated
rigorously for spherical inclusions with n0¼1/3, but they are
frequently applied to non-spherical inclusions with an effective
(average) form factor n0 differing from 1/3 [9–11]. Mixing rules
(1) and (2) are the quasi-static formulations, and the frequency
dependence of effective material parameters appears mainly due
to frequency dependence of the material parameters of inclusions,
with some possible effect of the dispersive parameters of
a matrix.

An applicability of any mixing rule to calculate effective
material properties of a composite depends on its dielectric or
magnetic contrast. The contrast is the difference between the
corresponding material parameter of inclusions and of the host
matrix [12]. A rigorous result for the case of small contrast (a-0)
is the Landau–Lifshitz–Looyenga (LLL) mixing rule [13,14], which
can be written as

b¼ pa�pð1�pÞa2=D ð3Þ

for a macroscopically isotropic composite in D dimensions. The
practically important cases are D¼3 (an isotropic 3D composite
with non-aligned randomly distributed inclusions whose shape
could be arbitrary in the general case) and D¼2 (an assembly of
infinitely long cylinders). As the permittivity and permeability of
any material converge to unity at frequencies tending to infinity,
the contrast a-0 and the LLL mixing rule governs the high-
frequency asymptotic behavior of any composite. The result of the
LLL mixing rule is independent of the form factor of inclusions.
Eqs. (1) and (2) are consistent with (3) at a-0 only when n0¼1/3.
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For the microwave permeability of magnetic composites, it is
frequently possible to obtain acceptable agreement with mea-
sured data with the use of the MGA and a fitted form factor. The
reason is that over the microwave frequency range the intrinsic
permeability of magnetic materials, especially of ferrites, does
not exceed several units due to its fast decrease with frequency
according to Snoek’s and Acher’s laws, and the contrast between
the permeability of inclusions and that of host matrix is not
large [12].

High contrast is typical for the permittivity of metal–dielectric
composites, as the magnitude of the complex microwave permit-
tivity of metal inclusions is so high that it can be considered as
infinite. Therefore, the microwave permittivity of composites
filled with metal powders is almost constant over a wide
frequency range, and is determined by the morphology of the
composite only. Most efforts made in the past have been aimed at
deriving a mixing rule to predict the permittivity of a metal–
dielectric mixture as a function of concentration, see, e.g., [15] for
a review.

For the permittivity of a metal–dielectric mixture, the Brugge-
man EMT is conventionally considered as the most suitable
theory, because it allows for predicting the percolation threshold,
pc. The percolation threshold is the concentration, at which the
mixture starts conducting the d.c. current, and the real part of
effective permittivity of the mixture tends to infinity. From
Eq. (2), it follows that pc¼n0. However, in reality, pc is known to
vary within a wide range depending on the composite morphol-
ogy. For example, the percolation threshold variation from 5 to
50% was observed in composites filled with the same carbon
powder, but different host matrices [16]. The reason for this is
that the structure and the rate of agglomeration of conducting
particles in a composite depend on a host matrix type.

Also, the effective form factor found from measured data at
low concentrations deviates from n0¼1/3 even in composites
filled with almost spherical particles, e.g., carbonyl iron powder
[17]. This could be due to agglomeration of the particles [17]. In
turn, disagreement with the LLL theory results in distortions of
the permeability frequency characteristics, because it is the LLL
theory that governs the material parameters at very high
frequencies.

The percolation threshold pc can be used as a fitting parameter
to ensure better agreement with measured concentration depen-
dences of material parameters.

For example, substituting a-N in Eq. (2), it can be easily
obtained that

b¼
p

n0

1

1�p=n0
: ð4aÞ

Since the percolation threshold is pc¼n0,

b¼
p

n0

1

1�p=pc
: ð4bÞ

Eq. (4b) coincides with the convenient fitting equation for the
quasi-static effective permittivity of a metal–dielectric mixture,
proposed by Odelevskiy [18], see [19] for details. It involves two
fitting parameters to approximate the measured concentration
dependence, n0 and pc. The parameter n0 is determined by
individual properties of inclusions and governs the permittivity
at low concentrations. The fitting parameter pc describes the
permittivity behavior near the percolation threshold, where
cooperative phenomena are dominant. Notice that the MGA also
agrees with (4b) if a-N and pc¼1. The concentration depen-
dence (4b) frequently provides an excellent fit to measured data
on the effective permittivity of metal-dielectric composites [19],
and hence will be employed in the further derivation.

Alternatively to the mixing rules, the effective material con-
stants of composites can be considered in terms of the Bergman–
Milton theory (BMT) [20] as

b¼
Z 1

0
BðnÞ

a
1þnadn: ð5Þ

The spectral function B(n) accounts for a distribution of the
effective form factors n, arising from both a statistical spread in
the shapes of inclusions and excitation of inhomogeneous fields
within the inclusions due to interactions. For the spectral func-
tion, the following sum rules are valid, see, e.g. [21]:Z 1

0
BðnÞdn¼ p and

Z 1

0
nBðnÞdn¼

pð1�pÞ

D
: ð6Þ

The sum rules are derived from the validity of the LLL mixing
rule at the values of material constant close to unity.

Any feasible mixing rule corresponds to a particular form of
B(n). For example, the spectral function for the MGA is a delta-
function, and therefore the MGA implies the same value of the
effective form factor for all inclusions. The EMT accounts for
a spread in effective form factors appearing due to the interac-
tions, and involves the spectral function (see, e.g., [22]):

BðnÞ ¼
3

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn�n1Þðn2�nÞ
p

n ,n1onon2

0, non1 or n4n2

,

8<
: ð7Þ

where n1 and n2 are parameters of the theory, both dependent on
p and D.

The current literature related to this topic lacks experimental
data to explicitly formulate spectral functions of actual compo-
sites. Therefore, to apply the BMT to the analysis of the measured
properties of composites, a parameterization of B(n), which
means the representation in the form with a number of fitting
parameters, is needed [17]. For example, the Ghosh�Fuchs
theory (GFT) [22] suggests the parameterization that produces
a single broad peak of B(n) as

BðnÞ ¼
Cðn�n1Þ

1�A
ðn�n2Þ

B=n, 0rn1rn2r1

0 otherwise
,

(
ð8Þ

where n1, n2, A, B, and C are the fitting parameters of the theory. It
has been shown recently that the GFT provides an excellent
agreement with the measured microwave material parameters
of magnetic composites, both their permittivity and permeability
[19]. Therefore a distribution of the form factors of inclusions is
essential for an accurate prediction of the microwave permittivity
and permeability. However, the GFT is inconvenient for use
because of its complicated mathematical form: it produces an
integral equation that relates a and b.

Herein, a simple analytical formulation of the Ghosh�Fuchs
theory is suggested. The proposed mixing rule is based on the
shape of the spectral function typical for the EMT with two fitting
parameters: the averaged depolarization factor of inclusions n0

and the percolation threshold pc. The fitting parameters are found
from the concentration dependence of permittivity of the com-
posite, in accordance to the Odelevskiy equation (4b). The
requirement of agreement with the LLL mixing rule at low
contrast of inclusions provides a unique mixing rule.

2. Theory

The EMT stands out against all the existing mixing rules,
because it incorporates the percolation threshold in a metal–
dielectric mixture. The reason is that the EMT is a quadratic
equation for the effective permittivity. At concentrations below
and above the percolation threshold pc, different solutions of the
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