

Contents lists available at SciVerse ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

Dual irreversible behavior of temperature dependence of magnetization in the spinel-type $Cu_{1-x}Ag_xCrSnS_4$

Shoichi Nagata*, Takahiro Ishikawa, Shuji Ebisu

Department of Materials Science and Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan

ARTICLE INFO

Article history:
Received 7 September 2011
Received in revised form
18 October 2011
Available online 20 November 2011

Keywords: Spin-glass Spinel sulfide Cu_{1-x}Ag_xCrSnS₄ Dual irreversibility Hump anomaly

ABSTRACT

A spinel-type compound CuCr_2S_4 has the Curie temperature $T_c \simeq 380\,\text{K}$. A family $(\text{Cu}_{1-x}\text{Ag}_x)$ $(\text{Cr}_{0.50}\text{Sn}_{0.50})_2\text{S}_4$ indicates a double non-magnetic substitution on A- and B-sites in the spinel, with a fixed composition of 0.50 on B-site. An exotic hump anomaly of the magnetization arises over 30– $130\,\text{K}$, while a conventional spin-glass behavior is observed below T_g = $17\,\text{K}$. Irreversible behavior between zero-field-cooled (ZFC) and field-cooled (FC) magnetizations has been detected in these two different temperature regions $T < 17\,\text{K}$ and $30\,\text{K} < T < 130\,\text{K}$. Experimental fine specification for causing this hump will be presented, with an emphasis on the sample preparation. The hump emerges from the restricted composition $0.45 \le x \le 0.58\,$ with annealing procedure, on the contrary, the quenched specimen extinguishes this hump. Magnitude of the hump varies intensely with applied magnetic field. A simple model to explain this novel hump will be discussed on the basis of the ionic radius of the substituted elements.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A spinel-type mother compound CuCr_2S_4 has the Curie temperature $T_c \simeq 380 \, \text{K} \, [1-5]$. The formula unit has a net magnetic moment close to $5.0\mu_{\text{B}}$. Fig. 1 shows the spinel crystal structure. The exchange interaction of CuCr_2S_4 has been evaluated based on the molecular field theory, where only Cr ion (S=3/2) on B-site has magnetic moment. In the Hamiltonian $H=-2JS_iS_j$, six nearest neighbor (nn) exchange interaction is $J_1=52 \, \text{K}$ with ferromagnetic coupling, and 12 next nearest neighbor (nnn) one is $J_2=-13 \, \text{K}$ with antiferromagnetic one [6,7].

The substitution of non-magnetic element for Cr ion suppresses strongly the ferromagnetic nature of CuCr₂S₄. The random substitution on *B*-site, Cu(Cr_{1-y} M_y)₂S₄ (where M=Ti [8], Zr [9–15], Hf [16], Sn [17–25]) has been extensively studied. Specimen with $y \simeq 0.50$ reveals spin-glass behavior below 20 K for all these non-magnetic substitution on *B*-site.

On the other hand, it is rare to find non-magnetic substitution for Cu on the A-site, except for $Ag(Cr_{0.50}Sn_{0.50})_2S_4$ with Ag replacing Cu [26–28]. In this study, we have accomplished a preparation of non-magnetic random substitutions on both A- and B-sites in the spinel structure. These double substitutions $Cu_{1-x}Ag_xCrSnS_4$, which is the same notation as $(Cu_{1-x}Ag_x)(Cr_{0.50}Sn_{0.50})_2S_4$, have been carried out over the entire range of $0.00 \le x \le 1.00$. Here, the Cr–Sn composition is fixed with y=0.50 on B-site.

Since only Cr ions have the magnetic moment, the substitution of Ag for Cu seems not to exhibit a peculiar change of the magnetic properties. An unconventional upturn hump anomaly, for the temperature dependence of the magnetization M(T), has been observed for ${\rm Cu}_{0.50}{\rm Ag}_{0.50}{\rm CrSnS}_4$ in the previous work [17]. Nevertheless, sample specification, for leading this novel hump, has not been ascertained so far.

This work focuses on the detailed sample specification concerning with composition range of x for causing the hump of M(T), and in particular a difference between annealed and quenched specimens. The experimental evidence for this hump in M(T) will be provided, with the emphasis of sample preparation. A simplified model to interpret this hump anomaly will be given.

2. Experimental

Polycrystalline samples of $(Cu_{1-x}Ag_x)(Cr_{0.50}Sn_{0.50})_2S_4$ were prepared using solid-state reaction in sealed quart ampoules [8,17,28]. For all the annealed procedure, these samples were heated to 1023-1053 K and kept for 4 days, then were annealed at 673 K for 4 h. The preparation of the quenched specimens will be mentioned below.

The dc magnetization measurements were performed with rf-SQUID magnetometer (quantum design MPMS). A remanent magnetic field was removed before the measurement. Both temperature dependences of zero-field-cooled (ZFC) magnetization $M_{\rm ZFC}(T)$ and field-cooled (FC) magnetization $M_{\rm FC}(T)$ have been measured [29].

^{*} Corresponding author.

E-mail address: nagatas@almond.ocn.ne.jp (S. Nagata).

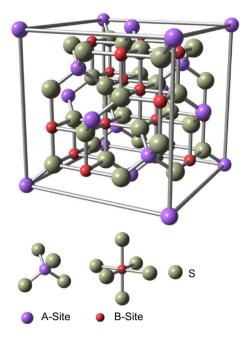
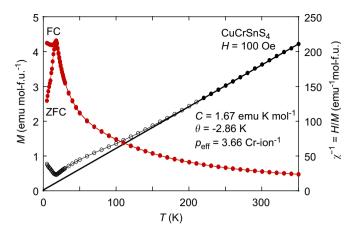


Fig. 1. Spinel crystal structure.

3. Results


3.1. Structure characterization

The Rietveld analysis from X-ray diffraction (XRD) data confirms the spinel-type structure for $\text{Cu}_{1-x}\text{Ag}_x\text{CrSnS}_4$ over the entire composition $0.0 \le x \le 1.0$. The representative results have been previously reported [17], excepting the quenched specimens. All the measured samples, both of annealed and quenched, have a single phase within the X-ray data, then exclude impurity effect. The site preference problem has been examined in detail, consequently Cu or Ag occupy A-site, while Cr or Sn occupy B-site. The random distribution of the substituted elements, in both of sites Ag for Cu on A-site and Sn for Cr on B-site, has been verified, by using the Rietveld simulation with RIETAN-2000 [17,30].

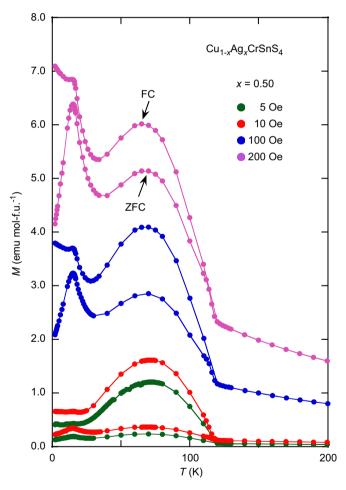

3.2. Annealed samples

Fig. 2 represents the temperature dependence of magnetization M(T) as well as the inverse magnetic susceptibility of CuCrSnS₄, where susceptibility is defined as $\chi=(M/H)$. The spin-glass behavior is observed below $T_{\rm g}=17$ K. The result fits the Curie–Weiss law in high temperatures. The value of effective Bohr magneton number $p_{\rm eff}$ Cr-ion⁻¹ is obtained to be 3.66, which is close to the value of 3.87 as a free Cr³⁺ ion. The asymptotic Weiss temperature θ has a value of -2.86 K. The results of M(T) for x=0.45 has been reported [17]. A germination of the anomaly of M(T) is seen in 10 and 20 Oe above $T_{\rm g}$ in the region of $T_{\rm g} \le T \le 110$ K for x=0.45, indicating the difference between $M_{\rm ZFC}(T)$ and $M_{\rm FC}(T)$.

Fig. 3 demonstrates the field dependence of M(T) over 5–200 Oe for x=0.50, and Fig. 4 for x=0.58 over 10–200 Oe. The conventional spin-glass behavior remains below $T_{\rm g} \simeq 17$ K. The hump spreads over 30–130 K, with irreversibility between $M_{\rm ZFC}(T)$ and $M_{\rm FC}(T)$. Figs. 3 and 4 exhibit clearly an irreversible behavior of M(T) over two different temperature regions T < 17 K and 30 K < T < 130 K. The hump is suppressed in higher fields and collapsed down, indicating a tiny trace quantity of the anomaly where $M_{\rm ZFC}(T)$ and $M_{\rm FC}(T)$ coincide with each other [17]. Fig. 5

Fig. 2. Temperature dependence of magnetization and the inverse susceptibility in a magnetic field of 100 Oe for CuCrSnS₄.

Fig. 3. Field variation of M(T) over 5–200 Oe for x=0.50. The data in higher fields than 200 Oe have been given by Ishikawa [17].

shows the results for x=0.60. The hump anomaly becomes extinct for the composition x=0.60.

Fig. 6 exhibits a variation for the magnitude of hump in 100 Oe. The composition range, yielding the upturn hump anomaly, is restricted in $0.45 \le x \le 0.58$. The most pronounced hump anomaly has been observed for x=0.50, and the data of the higher fields are given by Ishikawa [17]. For the outside composition regions x < 0.45 and x > 0.58, M(T) shows the absence of any hump behavior, whereas it holds the spin-glass behavior below

Download English Version:

https://daneshyari.com/en/article/10710067

Download Persian Version:

https://daneshyari.com/article/10710067

Daneshyari.com