

Available online at www.sciencedirect.com

Journal of Magnetism and Magnetic Materials 285 (2005) 395-400

www.elsevier.com/locate/jmmm

Magnetostriction of hard magnetic Nd₈₀Fe₂₀ mold-cast rod

R. Sato Turtelli^{a,*}, C. Bormio-Nunes^b, G. Kumar^c, R. Grössinger^a, J. Eckert^{d,c}, L. Schultz^c

^aInstitut f. Festkörperphysik, Technische Universität Wien, Wiedner Hauptsrasse 8-10, 1040 Vienna, Austria ^bFAENQUIL, Depto de Eng. de Materiais, CP 116, 12600-970 Lorena SP, Brasil ^cInstitut für Mettalische Werkstoffe, IFW Dresden, Postfach 270016, D-01171 Dresden, Germany ^dUniversität Darmstadt, Petersenstr. 23, D-64287 Darmstadt, Germany

> Received 9 June 2004; received in revised form 6 August 2004 Available online 1 September 2004

Abstract

Results of linear magnetostriction measurements on a $Nd_{80}Fe_{20}$ mold-cast rod applying a field up to 9 T parallel and perpendicular to the axis of the rod are presented. At 4.5 K, the parallel and perpendicular magnetostrictions at an applied field of $\mu_0H = 9$ T are -366×10^{-6} and -180×10^{-6} , respectively, indicating that the pure Nd crystalline phase formed in $Nd_{80}Fe_{20}$ during the solidification exhibits a crystallographic and a magnetic anisotropy. At 280 K, the $Nd_{80}Fe_{20}$ rod is magnetically isotropic and exhibits a positive magnetostriction of 36×10^{-6} , at $\mu_0H = 9$ T. The magnetostrictive properties are discussed based on the temperature dependence of magnetization and thermal expansion in conjunction with the previously reported results about the microstructure of the same specimen. © 2004 Elsevier B.V. All rights reserved.

PACS: 75.50.Vv; 75.30.Cr; 75.30.Kz; 75.80.+q

Keywords: Magnetostriction; Magnetization-temperature dependence; Rare earth-transition metal alloys; Thermal expansion

1. Introduction

Understanding of correlation between the structural and hard magnetic properties of mold-cast Nd-rich Nd-Fe and Nd-(Fe,Co)-Al alloys has

provided a large stimulus for the research into these materials. Mold-cast $Nd_{80}Fe_{20}$, $Nd_{60}Fe_{30}Al_{10}$, and $Nd_{60}Fe_{20}Co_{10}Al_{10}$ specimens show a similar room temperature coercivity of about 0.4 T [1–4]. The Curie temperature of these mold-cast specimens is in the range of 450–525 K [1–5]. Although, the mold-cast $Nd_{60}Fe_{30}Al_{10}$ and $Nd_{60}Fe_{20}Co_{10}Al_{10}$ rods do not display obvious crystalline peaks in the X-ray diffraction patterns but the high resolution transmission electron microscopy studies

^{*}Corresponding author. Tel.: +43-1-58801-13150; fax: +43-1-58801-13199.

E-mail address: reiko.sato@ifp.tuwien.ac.at (R. Sato Turtelli).

have revealed the presence of Nd-rich nanocrystals embedded in the amorphous matrix [6,7]. On the other hand, recently Kumar et al. [8] showed the formation of multi-phase microstructure in mold-cast Nd₈₀Fe₂₀ rod. The phases were identified as, pure Nd phase and Fe-Nd phase that is further composed of Nd-nanocrystallites embedded in an amorphous matrix. Therefore the temperature dependence of the coercive field and the magnetization of mold-cast Nd₈₀Fe₂₀ and Nd₆₀(FeCo)₃₀Al₁₀ alloys are similar, indicating magnetic ordering of the Nd-rich phases at low temperatures (20–50 K depending on the composition), resulting in two-phase hysteresis loops at temperature lower than 50 K. Additionally, the hysteresis loops are not saturated even at a maximum applied field of 22 T indicating the presence of a large magnetic anisotropy [3,9–11]. So far it has not been possible to make direct measurements of magnetic anisotropy in the mold-cast $Nd_{80}Fe_{20}$ and $Nd_{60}(FeCo)_{30}Al_{10}$ alloys due to the polycrystalline structure, therefore the lack of magnetic anisotropy data has made difficult to understand the large coercivity in mold-cast Nd₈₀Fe₂₀ and Nd₆₀(FeCo)₃₀Al₁₀ allovs.

Magnetostriction is one of the basic characteristics of a magnetic material, which can be explained on the macroscopic scale in terms of the stress dependence of the magnetic anisotropy. Generally rare-earth compounds like Nd–Fe and Nd–Co exhibit a large magnetic anisotropy [11]. In our previous work, linear magnetostriction measurements on bulk Nd₆₀Fe₂₀Co₁₀Al₁₀ alloy were reported [12]. The magnetostriction of this alloy is always positive, and a large value of 260×10^{-6} was measured at 4.5 K with an applied field of 9 T. In contrary to this, the polycrystalline elemental Nd exhibits a large negative magnetostriction of about -640×10^{-6} at similar temperature and applied field [12].

In the present work, linear magnetostriction measurements on a $Nd_{80}Fe_{20}$ mold-cast rod were carried out with increasing and decreasing field. The investigations were made in the temperature range of 4.5–280 K with a maximum applied field, μ_0H of 9 T. Additionally, the thermal expansion was measured from 4.2 to 25 K. The results are

compared with that previously reported for pure Nd and mold-cast Nd₆₀Fe₂₀Co₁₀Al₁₀ alloy.

2. Experimental procedure

Mold-cast Nd₈₀Fe₂₀ and Nd₆₀Fe₂₀Co₁₀Al₁₀ rods of 3 mm diameter and 40 mm length were prepared by casting into a copper mold under argon atmosphere. In this preparation method, a radial solidification may occur in the cylindrical material. The temperature dependence of the thermal expansion and magnetostriction of mold-cast $Nd_{80}Fe_{20}$ and $Nd_{60}Fe_{20}Co_{10}Al_{10}$ rods with a length of 3 mm, and a polycrystalline Nd sample in the shape of a cube with a length of 3 mm were measured using a miniature capacitance dilatometer [13]. The magnetostriction measurements were performed at temperatures between 4.5 and 280 K by applying a field parallel and perpendicular to the long axis of the rod specimen. The measurements were performed during increasing as well as decreasing the field from a maximum of 9 T. The temperature dependence of the thermal expansion was measured between 4.2 and 25 K. The magnetization as a function of temperature at an applied field of 4T was measured by using a vibrating sample magnetometer (VSM). X-ray diffraction measurements were carried out using a Philips PW 1050 diffractometer with CoKα radiation ($\lambda = 1.7889 \,\mathrm{A}$). Detailed microstructural studies of the mold-cast Nd₈₀Fe₂₀ and Nd₆₀(Fe- $Co)_{30}Al_{10}$ alloys are reported elsewhere [2,8,12].

3. Experimental results

Fig. 1 shows the field dependence of the linear magnetostriction ($\Delta l/l$) of mold-cast Nd₈₀Fe₂₀ rod measured by applying a field parallel and perpendicular to the long axis of the rod. At high temperatures, the total $\Delta l/l$ is positive and at temperatures <27 K, the $\Delta l/l$ is negative, which is similar to the behavior of polycrystalline Nd [12]. However, there is significant difference between the parallel (A in Fig. 1) and perpendicular (B in Fig. 1) magnetostriction values. The parallel magnetostriction is much larger than that of the

Download English Version:

https://daneshyari.com/en/article/10710249

Download Persian Version:

 $\underline{https://daneshyari.com/article/10710249}$

Daneshyari.com