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Abstract

Random systems of magnetic moments positioned in cites of a crystal lattice and interacting via RKKY- or

Bloembergen–Rowland-type interaction are considered in the framework of generalized mean-field theory (GMFT)

based on calculating and analyzing distribution functions F ðHÞ of random local magnetic fields H. For concentrated

systems (where the random local field is produced by a number of interacting magnetic moments), the function FðHÞ

turns out to be Gaussian one and all information about the system is contained in two parameters of that distribution

only—it’s width and maximum position. For rarefied systems (where the average distance between interacting moments

is comparable with or larger than the interaction length), distribution functions are essentially non-Gaussian. GMFT

has been applied for calculating the magnetic state of metals and semiconductors diluted with magnetic impurities.
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1. Introduction

It is well known that diluting non-magnetic
materials by magnetic impurities changes the
composite properties (magnetic susceptibility, spe-
cific heat, etc.). Such systems might be classified by
the matrix type: (i) diamagnetic metal, (ii) semi-

conductor, and (iii) insulator. Examples of the
first-type systems are the long-studied metal
alloys Cu1�xðMn;FeÞx; Au1�xFex [1] where im-
purity magnetic moments m interact indirectly
via intrinsic charge carriers of the metal matrix
whose concentration is not practically changed
during the dilution. The second-type systems are,
for instance, diluted magnetic semiconductors
Ga1�xMnxAs [2] or Cd1�xMnxTe [3] having been
extensively investigated in the context of their
perspectives for the new electron devices and,
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especially, spintronic ones. In these systems,
magnetic impurities provide those charge carriers
which lead to the inter-impurity interaction. The
third-type systems remain to be insulating after
diluting, and magnetic interaction in those systems
is of dipole–dipole type. The example of such a
system is LiY1�xHoxF4: Its properties are studied
in Ref. [4] and are not considered in the paper.
The common feature of all those systems is a

random arrangement of the impurities in the sites
of the parent lattice. It is known that the mean
field theory describes non-adequately properties of
such a disordered (random) system of magnetic
moments. The aim of the paper is to generalize the
mean field theory for the systems with the indirect
interaction of the magnetic impurities taking into
account the random character of their spatial
arrangement. We restrict ourselves by the Ising
approximation and assume that the indirect
interaction of impurity magnetic moments is either
RKKY-interaction via the polarization of free
charge carriers [2,3,5–7] (in a diamagnetic metal
with paramagnetic impurities) or Bloembergen–
Rowland interaction [8] (in a non-magnetic
semiconductor diluted by magnetic impurities).

2. Generalized mean field theory for Ising system

Ising model is the lattice-like system of magnetic
moments of two possible (opposite) directions that
interact with their neighbors only. There is the
exact solution [9,10] of that model for two-
dimensional rectangular lattice (L. Onsager,
1944) and approximate, but quite accurate, solu-
tion of Wakefield for three-dimensional simple
cubic lattice [10]:

kTC ¼ 2:27J ðsquare latticeÞ,

kTC � 4:5J ðsimple cubic latticeÞ, ð1Þ

where TC is Curie temperature, J is the energy of
neighbor interaction.
Generalizing those results for cases where the

interaction is extended beyond the first coordina-
tion sphere, and for more complex lattices, is
inconvenient. In those cases the mean field theory
is commonly used which determines Curie tem-

perature as kTC ¼ zJ (z is the number of the
neighbors), that is

kTC ¼ 4J ðsquare latticeÞ,

kTC ¼ 6J ðsimple cubic latticeÞ. ð2Þ

We notice that mean-field results differ signifi-
cantly from the exact ones. In addition to the
known defect of the mean-field theory that does
not take into account the correlation of the
moments, one further error of the model is that
it assumes the equivalence of all lattice sites. This is
reflected in the fact that the mean field supposed to
be the same in all sites though, in fact, it varies
from one site to another. In this connection it is
natural to account for this randomness and to
appreciate whether the accuracy of the solution
obtained with the generalized mean-field theory is
higher. That approach was first used in Ref. [6] on
considering the system of randomly arranged
magnetic dipoles. Later it was analyzed extensively
in the series of papers [11] where the starting point
was the distribution function of pair interaction
energies being defined ad hoc. The essence of such
a model is replacing the standard mean-field
equation

j ¼ tanh
lj

kT

� �
, (3)

where j is the reduced magnetization of the system,
l is the mean-field constant, with its generalized
analog

j ¼

Z 1

�1

tanh
mH3

kT

� �
F ðj;H3ÞdH3, (4)

where F ðj;H3Þ is the distribution function of local
magnetic fields H3: Those fields are generated in
the random system of magnetic moments with
magnetization j at the position of one of them by
all other moments (equal to m). Obviously, in
calculating the distribution function it would be
more proper to proceed from spatial dependence
of the pair interaction energy W ðrÞ but not from
the distribution function of those energies defined
‘‘by hands’’ (as was done in Ref. [11]). Notice that
the mean-field equation (3) is equivalent to the
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