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In this work, the time evolution of the free induction decay caused by the local dipole field of a spherical
magnetic perturber is analyzed. The complicated treatment of the diffusion process is replaced by the
strong-collision-approximation that allows a determination of the free induction decay in dependence of
the underlying microscopic tissue parameters such as diffusion coefficient, sphere radius and susceptibility
difference. The interplay between susceptibility- and diffusion-mediated effects yields several dephasing
regimes of which, so far, only the classical regimes of motional narrowing and static dephasing for
dominant and negligible diffusion, respectively, were extensively examined. Due to the asymmetric form
of the dipole field for spherical objects, the free induction decay exhibits a complex component in
contradiction to the cylindrical case, where the symmetric local dipole field only causes a purely real
induction decay. Knowledge of the shape of the corresponding frequency distribution is necessary for the
evaluation of more sophisticated pulse sequences and a detailed understanding of the off-resonance
distribution allows improved quantification of transverse relaxation.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Generally, in magnetic resonance imaging, transverse relaxation
is highly sensitive to microscopic properties of the underlying tissue.
Representative imagingmodalities that are based on these effects are
BOLD imaging [1], signal alterations in neurodegenerative disease [2]
or the development of iron-oxide contrast agents [3]. The main
physical principle of these applications is the susceptibility differ-
ence betweenmicroscopic magnetic perturbers and the surrounding
tissue that contains the spin-bearing particles. Especially in the case
of small magnetic objects, the contribution of diffusion of the
respective spins on signal formation is not negligible. However,
susceptibility and diffusion have opposing effects on signal forma-
tion: while static line broadening in NMR is based on susceptibility
effects, the influence of diffusion leads to a motional narrowing of
the line shape [4]. Therefore, a concise knowledge of the interplay

between susceptibility- and diffusion-related effects is important for
quantifying accumulations of microscopic magnetic tissue inhomo-
geneities. The susceptibility-induced local magnetic field inhomo-
geneities can be described by a multipole expansion whereby the
dominating contribution stems from the dipole field. The case of
negligible diffusion, also known as static dephasing regime, has first
been analyzed by Brown [5] for three-dimensional dipole fields and
also later in the seminal work of Yablonskiy and Haacke [6] where
the free induction decay and corresponding relaxation times are
analyzed for cylindrical and spherical perturbers. By adapting the
density-of-states concept known from statistical physics it is
possible to study the frequency distribution of the local Larmor
frequency around the magnetic objects. The first steps of analyzing
such frequency distributions arose in the field of lung imaging,
where the frequency density of states was calculated in terms of the
histogram method by subdividing the dephasing volume in smaller
subvoxels [7]. A detailed study of the dipole field signal formation of
spherical magnetic pertubers was provided by Cheng et al. [8] who
derived an analytical expression for the frequency distribution.
Further experimental evidence for the frequency distribution in the
static dephasing regime can be found in Ref. [9]. Objects with a more
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complex shape were considered in Ref. [10]; further findings were
reviewed in detail in Ref. [11]. So far, theoretical results could be
confirmed experimentally in various ways, especially for lung tissue
where three-dimensional dipole fields are the underlying geomet-
rical structures that are generated by air-filled alveoli [12,13].
Recently, the investigation of cylindrical objects and their influence
on signal formation became a focus of interest for cardiac magnetic
resonance imaging since myocardial architecture mainly consists of
capillaries that generate two-dimensional dipole fields due to
paramagnetic properties of deoxygenized hemoglobin [14]. By
adapting the well-known methods for the case of spherical objects,
it was possible to analogously analyze the frequency distribution
around cylindrical objects theoretically [15] and experimentally [16].

However, the influence of diffusion on the line-shape of the
frequency distribution is essential to understand diffusion-mediated
signal decay and the respective relaxation process. With increasing
diffusion, the line-shape narrows (also known as diffusion-
narrowing) and the frequency distribution can be approximated by
a Lorentzian line shape and the free induction decay by a
mono-exponential decay. The influence of diffusion and susceptibil-
ity on relaxation times has been analyzed in Refs. [17–19]. In general,
the combination of susceptibility effects and diffusion effects on
transverse magnetization can be described by the Bloch–Torrey
equation [20]. A step towards analytical quantification of the
free-induction decay has been carried out by Bauer et al. [14,21]
who established the strong-collision-approximation in replacing the
diffusion operator in the Bloch–Torrey-equation by a simpler
stochastic process operator. Incorporating the strong-collision-
approximation into the frequency density-of-states concept allows
examining diffusion effects on the line shape and free-induction
decay. For cylindrical magnetic objects, the frequency distribution
exhibits a typical pattern with two symmetric peaks in the static
dephasing regime while narrowing to a Lorentzian shaped peak
occurs with increasing diffusion [16]. These symmetric peaks reveal
analogies to beat frequency phenomena as known from the
harmonic oscillator [22]. They allow the classification of diffusion
regimes through the presence of an oscillating or decaying time
evolution of the free induction decay, corresponding to the existence
of one or two peaks in the frequency distribution, respectively.
Beside the strong-collision-approximation several other approxima-
tion were applied to the Bloch–Torrey-equation. The Gaussian
approximation [23] is valid for weak magnetic inhomogeneities as
well as the weak field approximation of Jensen and Chandra [24]. For
dominating susceptibility effects the slow diffusion approximation of
Kiselev and Posse [25,26] and the strong field approximation allow
predictions of the free induction decay.

Due to the complex nature of three-dimensional dipole fields, the
frequency distribution for spherical objects is not easily obtained.
However, similar effects of line narrowing through increased
diffusion effects have been observed (see Fig. 7 in Ref. [16]),
corresponding to a transition from the asymmetric shape of the
static dephasing regime to a symmetric shape in the motional
narrowing limit. Likewise, experiments of Mulkern et al. [27] found
asymmetric line-shapes for lung tissue. Therefore, the question
arises if similar analogies to the harmonic oscillator can be found for
the diffusion process in a three-dimensional dipole field. Moreover,
the oscillating or monotonically decaying behavior of the free
induction decay will be of interest for the quantitative analysis and
combination of susceptibility and diffusion weighted imaging.

In the present work we study the effects of diffusion on the
dephasing process of a dipole field around a spherical magnetic object.
These investigations enable a clear differentiation of diffusion regimes.
In addition, the characteristic form of the frequency distribution and
the free induction decay allow quantifying microscopic distributions
that consist of spherically shapedmagnetic components. Furthermore,

the calculated free induction decay is compared with other model
approximations and experimental measurements of human lung
tissue to support the theoretical predictions.

2. Methods

2.1. Diffusion and dephasing in a dipole field

We consider a tissue with embedded spherical magnetic pertur-
bers, such as alveoli in lung tissue. It is then convenient to adapt the
well-known Krogh capillary model to the three-dimensional case to
allow for an adequate approximative description of the complex
geometrical arrangement of such perturbers. In this approximation,
the spherical magnetic perturber is treated as a single sphere with
radius R that is surrounded by a spherical dephasing volume with
radius RD (see Fig. 1).

Naturally, the superposition of all magnetic field inhomogeneities
has to be considered to describe the susceptibility effects of the
tissue. Therefore, it is advantageous to use amultipole expansion and
keep only the leading term of the dipole moment. This can be
included into the model by assuming a homogeneously magnetized
inner sphere. Thus, the magnetic dipole field is given by

ω rð Þ ¼ δωR3 3cos
2 θð Þ−1
r3

; ð1Þ

where the characteristic equatorial frequency shift δω = |ω(r =
R,θ = π/2)| = γBeq and angle θ represent the angle between
external magnetic field B0 and position vector r = (r,θ,φ) (in
spherical coordinates) as sketched in Fig. 1. The equatorial magnetic
field Beq can be determined as Beq = μ0ΔM/3 with vacuum
permeability μ0 and the difference in magnetization ΔM between
homogeneously magnetized inner sphere and surrounding tissue.
The considered spherical magnetic object is assumed to not contain
any water molecules that contribute to the signal formation.
Spin-bearing particles diffuse in the spherical shell R ≤ r ≤ RD around
the local field homogeneity and such a diffusion process is
characterized by the diffusion coefficient D. The volume fraction of
the magnetic content is defined as

η ¼ R3

R3
D
: ð2Þ

The assumption of reflecting boundary conditions on the surface
of both concentric spheres can be used to account for the complex
arrangement of the spherical magnetic perturbers (see Fig. 1 in Ref.
[28] and Fig. 1 in Ref. [29]). This single spherical shell model is an
established approximation of the tissue (see, e.g., Ref. [30]) and can
be used for the description of lung tissue [11]. The model allows
calculating analytical expressions of the free induction decay and the
frequency distribution.

Generally, the complex-valued local magnetization m(r,t) =
mx(r,t) − imy(r,t) obeys the Bloch–Torrey equation [20].

∂
∂t

m r; tð Þ ¼ DΔþ iω rð Þ½ �m r; tð Þ ð3Þ

with Laplace operator Δ. The measured signal M(t) consists of the
superposition of signals at all points within the dephasing volume
and, thus, reads

M tð Þ ¼ 1
V

Z
V
d3rm r; tð Þ : ð4Þ
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