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A novel method for improving the accuracy of diffusion tensor imaging (DTI) is proposed. It takes into
account the bmatrix spatial variations, which can be easily determined using a simple anisotropic diffusion
phantom. In opposite to standard numerical procedure of the b matrix calculation that requires the exact
knowledge of amplitudes, shapes and time dependencies of diffusion gradients, the newmethod, whichwe
call BSD-DTI (B-matrix spatial distribution in DTI), relies on direct measurements of its space-dependent
components. The proposed technique was demonstrated on the Bruker Biospec 94/20USR system, using
the spin echo diffusion sequence to image an isotropic water phantom and an anisotropic capillary
phantom. The accuracy of the diffusion tensor determination was improved by an overall factor of about 8
for the isotropic water phantom.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Diffusion tensor imaging (DTI) of water using nuclear magnetic
resonance (NMR) methods has developed for nearly two decades. In
principle, it is a version of the magnetic resonance imaging (MRI), in
which additional magnetic field gradients are applied. They cause an
extra dephasing of precessing magnetization that depends on
translational mobility of water. A pioneering work of P. Basser et al.
[1,2] has began the era of DTI applications to biological systems,
allowing to study the diffusion of water in a quantitative way.
Comparing to the unrestricted diffusion in an isotropic medium, the
measurements in biological tissues provide important structural and
diagnostic information, which is not accessible by any other method.
This is particularly evident in studies of biological systems exhibiting
by nature strong structural anisotropy, such as spinal cord [3–11] or
brain [12–15]. The initial diffusion measurements performed in vitro
[3–7], were consecutively extended to in vivo studies [8–15]. A
relationship was found between changes in parameters characterizing
diffusion and the changes caused by injury or disease in the spinal cord
or brain. Another interesting and promising application of DTI is
tractography [16–30], which provides a way to visualize the

orientation of nervefibers in thebrain and spinal cord. Thequantitative
data obtainedbyDTI can also complement the informationobtainedby
standard functional MRI [31–33].

These applications stimulated a continuous progress of the DTI
methodology [34–51]. The pulse sequences were optimized by
proper selection of amplitudes and directions of diffusion gradient
vectors [34,39,41–48,52,53]. Appropriate quantitative parameters
derived from the measurements were selected to describe the
condition of the studied tissue [12,52–74]. A significant effort was
put to eliminate the adverse effects of imaging gradients, their
coupling with the diffusion gradients [12,47,75–78], and to reduce
the eddy current effects [79].

Due to anisotropic nature of the biological tissue, thediffusionmust
be often described by the tensor. It is a 3 by 3 symmetric matrix,
characterized by six independent parameters, which can be visualized
as an ellipsoid [59]. The eigenvectors and eigenvalues of the matrix
correspond to the orientation of the ellipsoid in space and the squared
amplitudes of its hemiaxes, respectively. The ultimate goal of the DTI
experiment is to precisely determine these parameters for every
individual voxel of the MRI image. This requires that, apart from the
reference image taken without any diffusion gradients, at least six
images are measured by applying at least six linearly independent
directions of diffusion gradients. Assuming that the shapes, amplitudes
and directions of diffusion gradients are known precisely, the
components of the diffusion tensor can be determined and then it
can be diagonalized, providing the required information.
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The parameters characterizing the diffusion gradients for a given
imaging sequence and for a given diffusion gradient direction are
incorporated in so called b-matrix. In commercial MRI systems the
b-matrices are provided. As such, they usually do not take into account
the imaging gradient effects, their coupling with the diffusion
gradients, or the eddy current effects. Moreover, the provided values
of b matrix are constant over the entire volume. It should be pointed
out that the above effects lead to systematic errors, so they cannot be
reduced by signal averaging. Although some ingenious techniques
have been devised to reduce these effects, they are either measure-
ment-time consuming, or not feasible in some circumstances. This
leads to limited accuracy of obtained data, which in view of growing
applications of the DTI, is a serious limitation of the technique.

In this paper we propose an alternative method of determining
the b-matrix by using an anisotropic phantom of known spatial
distribution of the diffusion tensor [82]. It almost completely
eliminates the need of knowing the parameters of the imaging
sequence. Moreover, the method provides detailed information on
spatial dependence of the b-matrix, voxel-by-voxel, in the entire ROI.
Recently the method has been named BSD-DTI (B-matrix spatial
distribution in DTI) [83], and this term will be used in the following.

We provide a theoretical basis for this method, and discuss its
advantages and limitations. As a preliminary evidence of the superiority
of the BSD-DTI over the standard procedure, an improved accuracy of
the diffusion tensor determination for the homogeneous water
phantom and the anisotropic capillary phantom is demonstrated.

1.1. Theory

The NMR signal attenuation due to diffusion in the pulse gradient
spin echo (PGSE) sequence is described by the Stejskal–Tanner
equation [80,81]:

ln
S bð Þ
S boð Þ
� �

¼ − b‐boð Þ : D ¼ −
X3
i; j¼1

bi j−boi j
� �

Di j ð1Þ

where S(b), S(bo) are the signal intensities with and without
diffusion-sensitizing gradients, respectively, bij—components of the
diffusion gradient matrix b, Dij—components of the diffusion tensor
D, and the colon designates the generalized dot product.

In the generic PGSE imaging sequence, a particular time-dependent
diffusion gradient vector can be expressed in the Cartesian system of
coordinates, G(t) = [G1(t), G2(t), G3(t)]T, which can be associated
with the x, y, z axes of the gradient system implemented in the MR
scanner. These axes can be also related to phase, frequency, and slice
encoding directions of theMRI sequence. The overall time dependence
of the b matrix can be concisely expressed in terms of the vector G in
the following way [59]:
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t

0

k t0
� �
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� �
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where
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0
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k τð Þ ¼ γ ∫
τ

0

G t 00
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and H(t)—the Heaviside unit step function, TE—echo time, τ = TE/2.
The symmetric 3 × 3 b(t)matrix is calculated for the maximum of

signal intensity corresponding to t = TEand contains six components:
bxx, byy, bzz, bxy, bxz, byz, for each orientation of the diffusion gradient

vector. In order to accurately calculate the b matrix components, we
need toknow the real amplitudes, shapes, and timedependencies of all
magnetic field gradients that are present during the DTI sequence.

The bmatrix canbe split into several parts corresponding to various
sources of magnetic field gradients. Typically, the largest contribution
bd comes from diffusion gradients. The second largest part bi is
generated by the imaging gradients. Much smaller components
originate from the background gradients, bg, and from bn, which
combines the contributions from eddy currents, nonlinear parts of
imaging gradients, radiation damping, and other sources of distortion
associated with the background gradients. And finally, in addition to
these first order terms, there are also cross-terms due to interference
between various gradients, which are proportional to their products.
Of these, typically the largest contribution comes from the pairs of
diffusion, and imaging gradients bdi; bdg, bdn, and big, bin, bgn, are
usually much smaller, but all may be space dependent.

The importance of cross termshas beenpointedout in the literature
[75–79]. The proposed methods of their elimination or reduction rely
on optimization of the imaging sequence, by shortening the echo time
TE [39], or increasing the diffusion gradients amplitudes.

The above discussion shows how difficult, if not impossible is to
determine the b matrix using the formula [2] with satisfactory
precision. There are some simple mathematical manipulations which
can reduce the influence of spurious gradients to some extent [77–79].
Two of them are described below.

1. Dividing the signal S(b) by S(bo) eliminates the impact of bi and
other possible components of b, which are the same for both MR
sequences, like bg and bn. However, this may not be true, especially
in microimaging, where strong diffusion gradients generate extra
eddy currents. It follows from Eq. (1) that:

− b−boð ÞD¼
− biþbgþbnþbdþbdiþbdgþbdnþbigþbinþbgn

� �
− biþbgþbnþbigþbinþbgn

� �� �
:D¼

− bdþbdiþbdgþbdn

� �
:D:

ð5Þ

For the convenience we introduce the substitution:

bd þ bdi þ bdg þ bdn ¼ b’: ð5’Þ

2. Multiplying the signals S(b) and S-(b) (signal intensity with the
opposite diffusion gradients) eliminates the cross-terms associated
with diffusion gradients. However, this procedure requires twice as
much measurement time:

−
 

bi þ bg þ bn þ bd þ bdi þ bdg þ bdn þ big þ bin þ bgn

� �

þ bi þ bg þ bn þ bd−bdi−bdg−bdn þ big þ bin þ bgn

� �!
:

D ¼ −2 bd þ bi þ bg þ bn þ big þ bin þ bgn

� �
: D:

ð6Þ

In subsequent discussion we will use the substitution:

bd þ bi þ bg þ bn þ big þ bin þ bgn ¼ b’’: ð6’Þ

Combining both methods we obtain the dependence on the
diffusion gradients only:

Ln S bð ÞS− bð Þð Þ1=2=S boð Þ
� �

¼ − b’’−boð Þ : D ¼ −bd : D: ð7Þ

In the next section, a new method is described for determining
the b matrix and its space dependence that does not require any
knowledge of shapes, amplitudes and time dependencies of diffusion
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