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Inferences made from analysis of BOLD data regarding neural processes are potentially confounded by
multiple competing sources: cardiac and respiratory signals, thermal effects, scanner drift, and motion-
induced signal intensity changes. To address this problem, we propose deconvolution filtering, a process of
systematically deconvolving and reconvolving the BOLD signal via the hemodynamic response function
such that the resultant signal is composed of maximally likely neural and neurovascular signals. To test the
validity of this approach, we compared the accuracy of BOLD signal variants (i.e., unfiltered, deconvolution
filtered, band-pass filtered, and optimized band-pass filtered BOLD signals) in identifying useful properties
of highly confounded, simulated BOLD data: (1) reconstructing the true, unconfounded BOLD signal,
(2) correlation with the true, unconfounded BOLD signal, and (3) reconstructing the true functional
connectivity of a three-node neural system. We also tested this approach by detecting task activation in
BOLD data recorded from healthy adolescent girls (control) during an emotion processing task.

Results for the estimation of functional connectivity of simulated BOLD data demonstrated that analysis
(via standard estimation methods) using deconvolution filtered BOLD data achieved superior performance
to analysis performed using unfiltered BOLD data and was statistically similar to well-tuned band-pass
filtered BOLD data. Contrary to band-pass filtering, however, deconvolution filtering is built upon
physiological arguments and has the potential, at low TR, to match the performance of an optimal band-
pass filter. The results from task estimation on real BOLD data suggest that deconvolution filtering provides
superior or equivalent detection of task activations relative to comparable analyses on unfiltered signals
and also provides decreased variance over the estimate. In turn, these results suggest that standard
preprocessing of the BOLD signal ignores significant sources of noise that can be effectively removed

without damaging the underlying signal.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The need to account for confounding factors in fMRI is a well-
known problem in fMRI analysis that uses BOLD signals. The
essential problem is that a BOLD signal is multidetermined: it is a
mixture of the neurovascular consequences of neural firing
combined with confounding factors, such as head motion, scanner
artifact and signal drift, neurophysiological variability, etc.
Consequently, signal fluctuations cannot be solely attributed to
neural causes, which limits inferences about neural processes in
functional imaging studies. Accordingly, attempts must be made to
account for and/or remove confounding (i.e., non-neural in origin)
sources of variance from BOLD data in order to foster more precise
inferences to inform cognitive and clinical neuroscience.
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Attempts to address this problem date back to seminal papers by
Friston and colleagues describing variations of the generalized linear
modeling (GLM) approach to filtering fMRI BOLD signal [1-4], which
models an observed BOLD signal, X, as

X=H-ws+D -wc+n7 (1)

where H is a matrix that comprised a set of explanatory functions
(i.e., kernel vectors); ws is the linear weight vector of these
explanatory kernel vectors; D is a matrix comprised of a set of
temporally structured confounding processes, w,; and, the final
term, 7) is white Gaussian noise. This framework is the bedrock on
which nearly all subsequent fMRI analyses are based. Early debate in
fMRI modeling focused on the magnitude and role of autocorrelated
noise processes, as well as the structure and applicability of the HRF
[5,6]. Numerous papers debated the pros and cons of voxel-wise
temporal smoothing and filtering [5,7,8].

The consensus from this early work, formed at the turn of
century, is that temporal smoothing, in general, damages the
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underlying signal in fMRI except in cases of appropriate experimen-
tal design combined with band-pass filtering [8]. Also, autocorrela-
tion (i.e., cardiac and respiratory influences) is the dominant source
of noise and should always be modeled in concert with Gaussian
white noise (i.e., thermal and quantum effects) [6,9,10].

Early work on modeling and smoothing BOLD signals was
predicated on the use of SPM [11] as a means of identifying
statistically significant task-related activations. As the GLM and SPM
approaches matured, and sophisticated understanding of the HRF
functions became available, researchers migrated the focus of fMRI
BOLD signal modeling efforts toward identification of causal
relationships in neural processing, particularly the general problem
of capturing the underlying temporal distribution of neural events.
This is exemplified in dynamic causal modeling, where deconvolu-
tion of the observed signal into neural estimates is the basis of
forming causal inferences. Indeed, researchers [12-14] have subse-
quently argued for the necessity of deconvolution of the BOLD signal
into its mediating neural events (either implicitly or explicitly) in
order to improve inferences about neural activity.

Deconvolution is an inversion of the observed BOLD signal into a
temporal distribution of individual neural events. This inversion
process has been well studied, and numerous recent algorithmic
approaches to this problem may be found in the literature [15-18].
The majority of deconvolution algorithms (excluding Bayesian
filtering approaches [16]) assume the GLM form of the BOLD signal
[15,18] in which matrix H (see Eq. (1)) is a convolution (i.e., Toeplitz)
matrix formed from temporal offsets of the canonical HRF. Thus, the
solution of this system yields a maximum likelihood estimation of
the underlying true BOLD signal given quasi-physiological
constraints. What makes deconvolution a unique problem is the
allowable form of the weight matrix, ws, such that neural activations
exhibit positive values and temporal structure, e.g., clustering and
sparsity [18].

Convolution of the appropriate HRF with the correct weight
vector, ws, will generate the true BOLD signal, i.e., a BOLD signal
containing only neural estimates combined with their neurovascular
consequences detected by BOLD. This unique feature of deconvolu-
tion (i.e., removing BOLD fluctuations that are not feasibly caused by
neural influences) allows for a potentially powerful filtering
approach: deconvolution of an observed BOLD signal into its neural
estimates followed by reconvolution with an HRF estimate to
produce a BOLD signal that is filtered of non-neural sources of
influence (confounds) and retains the true signal of interest (neural
processes). Thus, reconvolution of the deconvolved signal weights
(termed the encoding), under certain assumptions of the system’s
physiology, constitutes an optimal filter, which we term deconvolu-
tion filtering.

The goal of this work is to examine and understand the viability
of deconvolution filtering in improving analysis of real-world fMRI
data. To achieve this, we perform a three-part analysis. In the first
part, we simulate resting state fMRI BOLD of a single neural node
using a number of known confounds: normalization scale-effects,
downsampling effects, autocorrelated noise processes, and Gaussian
white noise processes. The use of a simulation allows us to precisely
estimate the root mean squared error (RMSE) and correlation
between the filtered signals and the true, unconfounded BOLD
signals. In the second part of the analysis, we vary additional
confounds such as HRF mispecification, noise process autocorrela-
tion, Gaussian white noise processes, and connection topology in a
three-node neural system; the use of a simulation in this case allows
us to precisely estimate the true functional connectivity graph of the
three-node system, thereby facilitating quantitative assessment of
both the absolute and relative roles of the various confounds, both
within a single filtering approach and across differing filtering
approaches: band-pass linear filtering, optimized band-pass linear

filtering, as well as deconvolution filtering using both a GLM [15] and
a nonlinear method [17] that strictly enforces positive neural
representations. We deem analysis of functional connectivity
estimation error critical in assessing how BOLD signal filtering
impacts real-world, commonly used analysis. In the third part, we
examine statistical properties of functional activation results of real-
world fMRI BOLD data as additional motivation for the use of
deconvolution filtering in practice.

We structure the manuscript into four parts. First, we describe a
computational model of the BOLD signal’s generation and observa-
tion for unifying performance results across filtering approaches.
Second, we describe the deconvolution filtering framework, as well
as two different deconvolution algorithms that will be used inside
the framework during experimentation; we also briefly review two
common band-pass filtering approaches and an optimized band-
pass filtering approach that we use as benchmark comparisons on
which to judge the performance of deconvolution filtering. Third, we
describe and execute a set of experiments on both simulated and real
BOLD that examine the performance of deconvolution filtering under
numerous signal confounds. Finally, we combine the experimental
results into a single assessment of the practical application of
deconvolution filtering, and we offer guidance on fruitful directions
of future research.

2. Methods

Our methods are composed of (1) a comprehensive parametric
computational model of an fMRI BOLD signal’s generation, (2) a
novel algorithm for filtering a BOLD signal via its deconvolved
representation, (3) band-pass filters based on Fourier analysis, and
(4) an optimal Fourier-based band-pass filter; we describe these
components below.

2.1. A generative model of fMRI BOLD data

Following prior simulation models [19,20], we construct a model
of resting state neural activity using standard assumptions about the
nature of the observed BOLD signal. We model fMRI BOLD data in
four distinct processes: (1) a functional network generation process;
(2) a neural generation process that captures temporal structure of
neural events induced either by external, unmodeled processes or
communication between brain regions; (3) a theoretical BOLD
generation process that maps neural events onto an ideal set of BOLD
signals (using either the canonical HRF or the balloon model); and,
(4) an observation process that maps theoretically ideal BOLD
signals onto low-frequency, noise-corrupted BOLD observations that
represent real-world data. Each of these processes is described in
detail below.

2.1.1. Functional network generation

We describe the relationships in space and time between
V distinct brain regions as a functional network, 7 = {C, L, p},
comprised of a connectivity model, C, a communication lag model, L,
and an external activity model, p. The connectivity model, C, is a
matrix of conditional probabilities, C(i,j) € [0, 1],1,j € 1,..., V,
determining the probability that a neural event in brain region j
will be induced by a neural event in brain region i. The lag model, L, is
a real-valued matrix, L(i, j) € [0, Liyax), i, j € 1,..., V dictating the
time delay (in seconds) required for brain region i to influence
region j. The bound L,y is the anatomically constrained maximum
time required for a neural signal to traverse the brain. The external
activity model, p, is a real-valued vector, p(i) € [0, 1],i € 1,..., V,
which determines the probability of neural activity intrinsically
generated by brain region i. Note, this intrinsic activity is intended to
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