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We previously derived a simple equation for solving time-dependent Bloch equations by a matrix
operation. The purpose of this study was to present a theoretical and numerical consideration of the
longitudinal (R1ρ = 1/T1ρ) and transverse relaxation rates in the rotating frame (R2ρ = 1/T2ρ), based on
this method. First, we derived an equation describing the time evolution of the magnetization vector
(M(t)) by expanding the matrix exponential into the eigenvalues and the corresponding eigenvectors
using diagonalization. Second, we obtained the longitudinal magnetization vector in the rotating frame
(M1ρ(t)) by taking the inner product ofM(t) and the eigenvector with the smallest eigenvalue in modulus,
and then we obtained the transverse magnetization vector in the rotating frame (M2ρ(t)) by subtracting
M1ρ(t) from M(t). For comparison, we also computed the spin-locked magnetization vector. We derived
the exact solutions for R1ρ and R2ρ from the eigenvalues, and compared them with those obtained
numerically fromM1ρ(t) andM2ρ(t), respectively. There was excellent agreement between them. From the
exact solutions for R1ρ and R2ρ, R2ρ was found to be given by R2ρ = (2R2 + R1)/2 − R1ρ/2, where R1 and R2
denote the conventional longitudinal and transverse relaxation rates, respectively. We also derivedM1ρ(t)
andM2ρ(t) for bulk water protons, in which the effect of chemical exchange was taken into account using a
2-pool chemical exchange model, and we compared the R1ρ and R2ρ values obtained from the eigenvalues
and those obtained numerically from M1ρ(t) and M2ρ(t). There was also excellent agreement between
them. In conclusion, this study will be useful for better understanding of the longitudinal and transverse
relaxations in the rotating frame and for analyzing the contrast mechanisms in T1ρ- and T2ρ-weighted MRI.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Recently, the longitudinal and transverse relaxations in the
rotating frame have attracted great interest, because they have the
potential to provide novel and unique image contrasts that are not
available from conventional magnetic resonance imaging (MRI)
techniques and they are more sensitive to molecular motion than
those obtained by conventional MRI techniques [1].

Michaeli et al. [2] reported that measurements of the longitudinal
relaxation time in the rotating frame (T1ρ) and transverse relaxation
time in the rotating frame (T2ρ) provide a possibility to generate MRI
contrasts in the human brain, and that their contrasts provide
information on different relaxation mechanisms: T1ρ reflects
differences in cell density predominantly by its specificity to
interactions between water associated with macromolecules and
free water, and therefore might provide an indication of neural loss
in Parkinson’s disease with higher sensitivity than conventional

longitudinal relaxation time (T1); T2ρ is sensitive to diffusion and
exchange of water protons in environments with different local
magnetic susceptibilities and likely reflects iron content with higher
sensitivity than conventional transverse relaxation time (T2).
Nestrasil et al. [3] reported that the shortening of T2ρ is an indicator
of iron content in the brain tissue. Micheli et al. [2] also mentioned
that T1ρ and T2ρ measurements are complementary to each other,
and could be useful for investigating neurodegenerative disorders.

Sierra et al. [4] reported that T1ρ- and T2ρ-weightedMRI is a useful
tool to quantify early changes in water dynamics, reflecting the
treatment response during gene therapy. Jokivarsi et al. [5] applied
T1ρ- and T2ρ-weightedMRI to quantitative assessment of water pools
in acute cerebral ischemia of the rat, and suggested that physico-
chemical models of the rotating frame relaxation may provide
insight into the progression of ischemia in vivo.

Recently, the chemical exchange saturation transfer (CEST)
between solute protons and bulk water protons has also attracted
great interest [6,7], because CEST can provide a novel probe to detect
dilute proteins/peptides, metabolites, and macromolecules [8–10],
as well as their chemical environments [11]. When we consider the
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longitudinal and transverse relaxations in the rotating frame under
biological conditions including those pools, it will be essential to take
a 2-pool chemical exchange model into account.

Despite much progress in our understanding of the longitudinal
relaxation in the rotating frame, theoretical descriptions and
applications of the transverse relaxation in the rotating frame have
been limited [4].

We previously derived a simple equation for solving the time-
dependent Bloch equations using a matrix operation [12], and
presented a method for visualizing the trajectory of a magnetization
vector in MRI with or without spin lock [13]. The purpose of this
study was to present a theoretical and numerical consideration of
the longitudinal and transverse relaxations in the rotating frame
without and with the CEST effect, by use of these methods [12,13].

2. Materials and methods

2.1. One-pool model

2.1.1. Bloch equations
The time-dependent Bloch equations for constant radiofrequency (RF) irradiation in the absence of diffusion can be given in a rotating

frame with the same frequency as that of the RF pulse as follows [12,14]:

dMx tð Þ
dt

¼ ΔωMy tð Þ−R2Mx tð Þ
dMy tð Þ

dt
¼ −ΔωMx tð Þ−R2My tð Þ þω1Mz tð Þ

dMz tð Þ
dt

¼ −ω1My tð Þ−R1 Mz tð Þ−M
0
z

h i

8>>>>><
>>>>>:

ð1Þ

where Mx(t), My(t), and Mz(t) denote the x-, y-, and z-components of the magnetization in the rotating frame at time t, respectively, ω1 the
amplitude of the RF-pulse irradiation with a frequency of ω applied along the x-axis of the rotating frame (=γB1, where γ and B1 are the
gyromagnetic ratio and RF power, respectively), and Δω (=ω0 − ω) the offset frequency of the RF-pulse irradiation with respect to the
Larmor frequency (ω0). R1 and R2 denote the relaxation rates, i.e., the reciprocals of the longitudinal (T1) and transverse relaxation times (T2),
respectively. Mz

0 denotes the thermal equilibrium z-magnetization in the absence of RF-pulse irradiation.
The differential equations given by Eq. (1) can be combined into one vector equation [12]:

dM
dt

¼ A⋅M; ð2Þ

where

M ¼ Mx tð Þ My tð Þ Mz tð Þ 1
� �T ð3Þ

and

A ¼
−R2 Δω 0 0
−Δω −R2 ω1 0
0 −ω1 −R1 R1M

0
z

0 0 0 0

0
BB@

1
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T in Eq. (3) denotes the matrix transpose.
The solution of Eq. (2) can be given by [12]

M tð Þ ¼ e
AtM 0ð Þ; ð5Þ

where M(0) is the matrix of initial values at t = 0. eAt is the matrix exponential, which can be given by (see Appendix A)

e
At ¼ Vdiag e

λ1t ; e
λ2t ; e

λ3t ; e
λ4t

h i
V−1

; ð6Þ

where V is the matrix of eigenvectors (eigenmatrix) for A, and λ1, λ2, λ3, and λ4 are their eigenvalues.
If Mx(0) = My(0) = 0 and Mz(0) = 1 are assumed, i.e., M(0) = [0 0 1 1]T, the analytical solutions for the eigenvalues and the

corresponding eigenvectors can be derived [12,14,15] and are given in Appendix B. As shown in Appendix B, λ4 is always zero. Except for λ4,
matrix A has one real eigenvalue and two complex eigenvalues, and the real parts of these eigenvalues are negative. In the following, we
assume that the first eigenvalue (λ1) of matrix A is much smaller in modulus than the others, i.e., |λ1| b b |λ2| = |λ3|.

Substituting Eq. (6) into Eq. (5) and using λ4 = 0 yield (see Appendix A)

M tð Þ ¼
X4
i¼1

ciVie
λi t ¼

X3
i¼1

ciVie
λi t þ c4V4; ð7Þ

where ci (i = 1, 2, 3, 4) and Vi (i = 1, 2, 3, 4) denote the constant and the ith eigenvector given in Appendices A and B, respectively. Because
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