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The projection-onto-convex-sets (POCS) algorithm is a powerful tool for reconstructing high-resolution
images from undersampled k-space data. It is a nonlinear iterative method that attempts to estimate
values for missing data. The convergence of the algorithm and its other deterministic properties are well
established, but relatively little is known about how noise in the source data influences noise in the final
reconstructed image. In this paper, we present an experimental treatment of the statistical properties in
POCS and investigate 12 stochastic models for its noise distribution beside its nonlinear point spread
functions. Statistical results show that as the ratio of the missing k-space data increases, the noise
distribution in POCS images is no longer Rayleigh as with conventional linear Fourier reconstruction.
Instead, the probability density function for the noise is well approximated by a lognormal distribution. For
small missing data ratios, however, the noise remains Rayleigh distributed. Preliminary results show that
in the presence of noise, POCS images are often dominated by POCS-enhanced noise rather than POCS-
induced artifacts. Implicit in this work is the presentation of a general statistical method that can be used to
assess the noise properties in other nonlinear reconstruction algorithms.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Undersampling of k-space data has been widely used as an
effective approach for rapid 2D and 3D MR imaging in a variety of
clinical applications [1-13]. Typically, the central zone of k-space is
fully sampled but the peripheral zone is partially (randomly or
deterministically, temporally or spatially) sampled; hence the total
scan time is noticeably reduced. Reconstruction from these under-
sampled MR data may use the conventional linear inverse Fourier
transform (iFT) approach with zero-filling (ZF) [5,12], but this gen-
erally results in low-resolution images and poor image quality,
especially when it is applied to sparsely sampled (vastly under-
sampled) MR data necessary for ultra-fast imaging. Alternatively, the
reconstruction may attempt to estimate the missing data [3,7,14,15]
to obtain higher-quality images, for example in parallel imaging
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when using multi-coil acquisitions with specific undersampling k-space
patterns [6]. In this regard, a variety of nonlinear reconstruction
techniques [7,10,11,13,14,16-18] have also been successful in recon-
structing high-resolution images from partially sampled data. Such
techniques [16,19,20] are still emerging, as the demand for shorter scan
times with little compromise in image quality always increases.
Although the convergence and other deterministic properties of these
nonlinear methods are well established, little is known about how noise
in the source data influences noise in the final reconstructed image.
Also, characterizing and determining the performance of any of these
methods require a detailed understanding of the statistical properties of
the images.

For MR magnitude images produced by linear reconstruction
algorithms, such as the conventional iFT or linearly combined multi-
coil data in parallel imaging, it is straightforward to characterize the
noise as having a Rayleigh distribution due to the linear property of
the FT and the reconstruction algorithm [21-25]. This distribution
becomes Rician in regions inside the imaged object (i.e., noise +
signal). Dietrich et al. [25] have shown that the noise characteristics
in linearly reconstructed multi-coil images (regardless of recon-
struction algorithm used) follow the Rayleigh distribution. A com-
mon and simple nonlinear multi-coil reconstruction method, i.e., the
sum-of-squares reconstruction, was also investigated, in which noise
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distribution of the magnitude image was not surprisingly found to
follow a non-central chi-distribution. Up to now, however, there
have been limited descriptions of the noise statistics (and its related
effects) when using nonlinear MR reconstruction methods
[17,20,25-27]. In evaluating the noise properties of these techniques
and comparing them to those obtained in other reconstruction
methods (e.g., via signal-to-noise ratio, SNR, and contrast-to-noise
ratio, CNR, calculations), care is warranted because the nonlinearity
of the algorithm can modify the underlying noise properties of the
image. Therefore, direct measurement of signal-to-noise intensity
ratios [21,22] in such images can result in incorrect quantitative
information and may lead to misinterpretation of image recon-
struction performance. Also, reporting correct SNR efficiency mea-
sures (SNR per square root of scan time) for each imaging method
becomes more important in such cases because both the noise
power and the total scan time of undersampled data are considered
in the calculations.

In this study, we investigate the noise properties of the
projection-onto-convex-sets (POCS) MR reconstruction method
with phase and data-consistency constraints. The POCS algorithm
is an iterative constrained approach [7,17,18] that nonlinearly rec-
onstructs images—usually from truncated k-space data—by attempt-
ing to estimate values for the missing data [18]. The POCS
reconstruction algorithm has also been used for both interpolation
and extrapolation of sparsely sampled data [17]. Other applications
of POCS algorithm have included: motion artifact reduction [28,29],
ghost correction [30], image restoration [31], and in combination
with parallel imaging [32,33].

Here, we experimentally and statistically characterize the pro-
perties of noise in the POCS algorithm from phantom and human MR
data. Specifically, we investigate the point spread function and pro-
pose a stochastic model for the noise distribution in POCS-
reconstructed magnitude images obtained from undersampled 3D
k-space data and compare the noise properties to those in con-
ventional iFT with ZF. We show that the probability distribution for
the noise is well approximated by lognormal and Rayleigh models.
Implicit in this work is the presentation of a statistical method that
can be used in assessing the noise characteristics of other nonlinear
reconstruction algorithms.

2. Materials and methods
2.1. Data acquisition

Fully sampled 3D k-space data sets were acquired on a clinical
3.0-T MR scanner (Signa VH/i; General Electric Healthcare, Wauke-
sha, WI, USA) using a vendor-supplied quality assurance phantom,
and the legs and head of two healthy volunteers. These data sets
were selected because they exhibit a variety of low- and high-
resolution structures. The leg data sets were used from our previous
work [17]. Informed written consents, approved by our institutional
review board, were obtained from the volunteers prior to scanning. A

Table 1
Typical scan parameters used for phantom and volunteer experiments.

gradient-recalled echo (GRE) sequence with standard transmit/
receive head coil was used to image the phantom. A balanced steady-
state free precession (bSSFP) sequence with transmit/receive body
coil was used to scan the legs. A fast GRE sequence with eight-
channel receive-only phased-array coil was used to scan the head.
This variety of pulse sequences and objects was used to test for any
sequence and object dependency in the results. Table 1 shows the
typical scan parameters used for the experiments.

2.2. Phantom simulations

To separate noise from artifacts in POCS-reconstructed images
and to investigate spatial variability of the noise, a set of noise-free
(i.e., for artifact-only analysis) and noise-added phantom simula-
tions were conducted. Spherical objects with uniform amplitude of
1.0 were created, and independent and identically distributed
complex Gaussian noise with zero mean (¢ = 0) and two standard
deviations levels (0, = 0.1 and 0, = 0.2) was evenly added to the
complex data.

2.3. Data undersampling and image reconstruction

A commercial program (MATLAB, Version 7.4.0, R2007a; Math-
works, Natick, MA, USA) on a general-purpose workstation (Optiplex
960, quad Q9650 at 3.0 GHz, 4.0 Gb RAM running under Microsoft
Windows XP Professional x64; Dell Inc., Round Rock, TX, USA) was
used to emulate undersampling and to implement the POCS and
conventional iFT with ZF reconstruction algorithms. From each fully
sampled k-space data, as illustrated in Fig. 1a, only a fraction, C + P,
of the acquired data was retained (0 < C + P < 1, where C and P
are fractions of data at the center and the periphery of the k-space,
respectively), corresponding to a shortened scan time of
100(C + P)% of the total prescribed scan time. Without loss of
generality, the readout direction was denoted as k, in this study.
100C% of the readouts, each fully sampled along k,, was retained as
the fully sampled central (ky, k;)-phase-encoding zone and 100P% of
the readouts was retained in the peripheral phase-encoding zone.
Two general undersampling strategies, namely i) truncated k-space
[7,18] (Fig. 1b) and ii) sparsely sampled k-space (Fig. 1c) [5,17]
were used. For the truncated sampling, the 100P% phase encodings
were selected on one side along the central phase-encoding zone
(C region) so that C and P regions, together, made a fully sampled,
shifted rectangular phase-encoded zone. For sparse sampling the
100P% phase encodings were chosen randomly and uniformly across
the peripheral zone. C ranged from 0.0156 to 0.250, corresponds to a
central zone with 1/8 to 1/2 of the maximum phase-encoding values
along each ky and k.. For a specific C value, P was varied from 0.0 to

0.5+0.5V/C) —C (for sampling pattern of Fig. 1b), and from 0.0 to
(1 = C) (for sampling pattern of Fig, 1c), which resulted in
shortened scan times ranging from C to (0.5 + 0.5ﬁ2 and from C
to 1.0, respectively; where 1.0 is the normalized total scan time of
the fully sampled data. These values were selected to match scan

Scan parameters QA Phantom (GRE)

Volunteer 1—legs (bSSFP) Volunteer 2—head (fast GRE)

TR/TE/flip angle 8.1 ms/3.2 ms/60°
Receiver bandwidth +62.5 kHz

FOV 20 cm
Acquisition matrix 256 x 256 x 64

Slice thickness 1 mm
Total scan time (full k-space) 133 s
Coil Quadrature head

8.1 ms/4.05 ms/45° 4.7 ms/1.4 ms/35°

+62.5 kHz +62.5 kHz

20 cm 22 cm

256 x 256 x 48 256 x 256 x 48
1.5 mm 2 mm

100 s 58s

Body 8-Ch PA head

Abbreviations: TR, repetition time; TE, echo time; FOV, field-of-view; GRE, gradient-recalled echo; bSSFP, balanced steady-state free precession; PA, phased-array.
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