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a b s t r a c t

We investigate theoretically the dependence of energy transfer rate in Double-Quantum-Well system

on the well thickness by using the balance equation formalism. Also, by including the local field

correction in our calculations through the zero- and finite-temperature Hubbard approximations,

we study the effect of the short-range interactions on the energy transfer phenomenon. Calculations

consider both the static and dynamic screening approximations. Our numerical results predict that the

energy transfer rate increases considerably by increasing the layers’ thicknesses and by taking into

account the short-range interactions, as well.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Double-Quantum-Well (DQW) structure, in which two parallel
quantum layers separated by a few nanometers and coupled through
the Coulomb interaction has been extensively studied theoretically
and experimentally in past years. Due to its special physical proper-
ties and applications, this structure is still interesting for research.
In this coupled system, the interlayer interaction plays an important
role and is responsible for some interesting phenomena such as
momentum transfer or Coulomb drag and energy transfer between
spatially separated layers without exchanging any carrier. The Cou-
lomb drag in a double-quantum-layer system in which a current
driven through one layer induces a voltage difference in the other
layer, provides a unique approach to investigate the electron–electron
interaction directly in a low-dimensional many-body system from a
transport measurement [1–3]. The various aspects of this effect have
been studied in detail, in several experimental and theoretical works
[4–13]. By allowing different electronic temperatures in two adjacent
layers, the energy of electrons in one layer can be transferred to the
electrons in another one, located in close proximity but with no
interlayer tunneling. This hot electron transport process can occur
with or without an externally applied electric field [4–14] called non-
linear and linear regimes, respectively. Based on the energy-balance
formalism, the rates of energy transfer in double quantum systems

have been investigated in few papers and their dependence on the
temperature, electron density and separation between structures
have been reported [15–19]. Specially, Tanatar considered coupled
quantum wires [18] and wells [19] system due to Coulomb interac-
tion theoretically and calculated the effects of the static and dynamic
screenings within the random phase approximation (RPA) on the
energy transfer rate in both linear and non-linear regimes. In high
electron density systems, the RPA which accounts for the long range
screening has worked very well. Nevertheless, in the limit of low
density, it is necessary to improve the RPA by including the effects
of short-range interactions through the local field correction. The
so-called Hubbard approximation which takes exchange effects into
account is a first improvement upon the RPA.

In the work presented here, we first investigate theoretically
the layer thickness effect on the energy transfer rate for a DQW
system by using the balance equation approach at linear regime
and employing the temperature dependent RPA dielectric func-
tion for screened interaction. We also calculate the energy
transfer rate beyond the RPA by including both the zero- and
finite-temperature Hubbard local field correction factors in the
screened potential. This study includes both static and dynamic
screening effects.

The article is organized as follows. In Section 2 we describe the
model and summarize theory of energy transfer rate for a DQW
system. We also present the screened interlayer potential formalism
within the RPA and Hubbard approaches for coupled quantum layers.
Section 3 is dedicated to numerical results and discussion. Finally,
in Section 4 the conclusion of our work is given.
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2. Theory

We consider a system of two parallel identical rectangular
quantum wells of width L which are spatially separated from each
other in the z direction by a center to center spacing d. We study
the case of n-doped GaAs-based quantum layers and neglect the
holes contribution. In each layer the sheet electron density is
related to the Fermi wave vector, kF, as n¼ k2

F=2p and to the Fermi
temperature, TF, by n¼mnTF=p where mn is the electron conduc-
tion band effective mass. It is convenient to introduce the
dimensionless density parameter, rs, the ratio of average distance
between electrons in a non-interacting electron gas to the
effective Bohr radius an

B ¼ ðm
ne2=esÞ

�1 (where es is the background
dielectric constant) which is obtained for a two-dimensional
system as rs ¼ 1=ðan

B

ffiffiffiffiffiffi
pn
p
Þ. We are interested in investigating the

transport properties of our coupled system in steady state. The
balance equation approach to linear and non-linear hot electron
transport theory formulated by Lei and Ting [20] is a powerful tool
in describing the response of the semiconductor nanostructures to
the externally applied fields in terms of the electron drift velocity
and temperature. In our coupled 2DEG system, we assume that one
of the layers (layer 1) with electron temperature T1 is subjected to
an electric field, E, which causes the electrons within this layer to
move with a drift velocity vd1¼mE (m is the electron mobility). The
other layer (layer 2) is supposed to be in an open circuit condition,
i.e. vd2¼0 and has an electron temperature T2. There are two
different energy transfer regimes called linear and non-linear
according to the weak and strong electric field, respectively. In
the linear regime where the applied electric field is sufficiently
weak, the temperature difference between the electrons in two
adjacent quantum wells is responsible for the energy transfer
phenomenon, so one can consider vd1-0 at the end of calculations.
For non-linear case, the electrons in layer 1 are subject to stronger
electric field and vd1 cannot be neglected.

From the energy balance equation, the energy transfer rate
between two layers due to interlayer Coulomb coupling is given
by [21]
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In the above equation q is a two-dimensional wave vector in
the quantum well plane, o12¼qz(v1d�v2d), W12ðq,oÞ ¼ V12ðqÞ=
det½eðq,oÞ� is the dynamically screened interlayer potential,
w(q,o,T) is the temperature dependent 2D non-interacting suscept-
ibility [2] and nBðxÞ ¼ 1=ðexpðxÞ�1Þ is the Bose–Einstein distribution
function. Here, V12(q) and e(q,o) are the bare interlayer Coulomb
potential and dynamic two-component dielectric matrix. In general,
the exact e(q,o) is a very complicated quantity so cannot be
calculated analytically and needs to be approximated. The most
common approximation to calculate the dielectric function of a
many-body system is RPA which considers only the long-range
interactions and neglects the short-range effects. It is well-known
that in high electron density systems, the RPA is an effective and
reliable approximation for e(q,o). On the contrary, for low electron
density systems, the short-range interactions play more significant
role and the RPA results are not accurate any more. The determinant
of dynamical dielectric matrix for a double system within the RPA is
given by

det½eðq,o,T1,T2Þ� ¼ ð1�V11ðqÞw1ðq,o,T1ÞÞð1�V22ðqÞw2ðq,o,T2ÞÞ

�V12ðqÞw1ðq,o,T1ÞV21ðqÞw2ðq,o,T2Þ ð2Þ

In the above expression the intra-layer (i¼ j) and interlayer (iaj)
bare Coulomb potential matrix elements obtained from

VijðqÞ ¼
2pe2

qes
FijðqÞ ð3Þ

Here i, j¼1, 2 and Fij(q) is the form factor of quantum well which
contains all the information about the geometry of system. This
function is defined by the following equation [2]:

FijðqÞ ¼

ZZ
dzdz09CiðzÞ9
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0Þ92
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where Ci(z) is the envelope function of ith quantum well. For a
system of two infinitely deep rectangular quantum wells with equal
well width L and the center to center spacing d, the intra- and
interlayer form factors are calculated analytically [2–22]

FiiðxÞ ¼
3xþ8p2=x

x2þ4p2
�

32p4½1�expð�xÞ�

x2ðx2þ4p2Þ
2

ð5Þ

FijðxÞ ¼
64p4sinh2

ðx=2Þ

x2ðx2þ4p2Þ
2

expð�qdÞ ð6Þ

where x¼qL.
As mentioned earlier, the short-range exchange and correla-

tion interactions become more important at low electron density
systems. In this case we should go beyond the RPA by introducing
the local field correction factor into the dielectric function of
system. The Hubbard local field correction, GH(q), which is an
exchange correction to the RPA [23] has been analytically calcu-
lated for a two-dimensional electron gas system by Jonson [24]

GHðqÞ ¼
1

2

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þkF

2
q ð7Þ

Hwang and Das Sarma introduced the temperature dependent
Hubbard local field correction by substituting thermal Fermi
wave vector kF ðTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mnmðTÞ

p
for kF where m(T) is the chemical

potential [25]:

GHðq,TÞ ¼
1

2

qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ2mnmðTÞ

p ð8Þ

This idea has been used in a few previous works [26–28]. To
include the local field correction into the det½eðq,o,T1,T2Þ�, we
replace the intra-layer potential Vii by Vii(1�GH(q)) and neglect
the short-range effects on the interlayer interactions.

3. Numerical results and discussion

We consider a DQW structure containing two parallel identical
n-type doped GaAs-based quantum layers that are coupled due to
the screened Coulomb interaction. The quantum wells are
assumed to be infinity deep so electron tunneling between layers
is impossible. We calculate the energy transfer rate between two
layers in linear regime by employing both the static and dynamic
screening functions and using the parameters of Ref. [19]. Here,
we study theoretically the dependence of energy transfer rate on
the layer thickness. Moreover, by using the zero and finite
temperature Hubbard local field corrections, we investigate the
short-range effects on the energy transfer rate. We restrict our
study to the case rs¼2 and interlayer separation d¼50 nm. Also,
according to the Ref. [19] the electron temperature of layer 1 is
kept constant at T1¼TF in all calculations.

The energy transfer rate as functions of dimensionless electron
temperature of layer 2 for three different layer thicknesses is
depicted in Fig. 1. Here, the dielectric matrix is calculated within
the static RPA. As it is shown, the energy transfer rate increases by
increasing layer thickness. This behavior can be explained by the
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