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a b s t r a c t

Virtual crystal approximation is adapted to address peculiarities of propagation of acoustic waves

through a 1D ‘sandwich’ superstructure consisting of alternating layers of two types randomly

substituted by foreign layers of the third type. Same-parity layers are of the same width and constitute

a sublattice. Dependence of the lowest forbidden acoustic zone width of the described structure on

concentrations of impurity layers in the two sublattices is numerically evaluated for longitudinal and

transverse excitations. Values of substitute concentrations making the structure completely transpar-

ent prove to be independent of the relative widths of the 1st and 2nd type layers.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Practical objectives of acoustic sciences may somewhat con-
ventionally be divided into two big tasks, namely reduction of
unwanted noises and enhancement of useful acoustic signals.
Numerous examples can be cited from the fields of medicine,
material science, mining engineering, warfare, etc. Hence the
necessity of fabricating metamaterials with predictable acoustic
spectra and development of adequate theoretical models. Apart
from immediate technical applications following the propagation
of sound excitations is a widespread and very often indispensable
method for examining solids. Acoustic techniques are being
constantly improved, primarily in the direction of extension of
frequency range.

Today there are substantial number of works devoted to
calculation of electromagnetic and acoustic excitation spectra in
superlattice systems [1–6]. For the most part they are based on
the T-matrix method and involve solution of systems of equations
for the Fourier components of the corresponding fields. Real
acoustic superlattices are always non-ideal [7–9]. In the majority
of cases that makes impossible to obtain analytically the physical
characteristics of interest (such as transmission coefficients, band
spectra etc.), and so the approximate and numerical methods
must be employed. In Ref. [10] it is shown for instance that near
the Brillouin zone optical frequencies can approximately be
expressed in analytic form as functions of the Bloch wave vector.

In our previous papers we adapted the approach used for
ideal superlattices [10] to study electromagnetic excitations in
non-ideal 1D systems comprising randomly distributed foreign
(defect) layers [5,6]. A method permitting to calculate acoustic
excitation spectrum under this kind of disorder is the configura-
tion averaging [11]. Unlike methodology of Refs. [7–9] it enables
one to obtain the quantities of interest (including localized
modes) as functions of impurity concentrations. Replacement of
the configurationally dependent Hamiltonian parameters by their
configurationally averaged values comprises the essence of the
virtual crystal approximation (VCA) [12] used in Refs. [5,6] to
study optical characteristics of non-ideal superlattices.

The present work concerns with extending the approach of
Refs. [5,6] to investigate the peculiarities of propagation of
acoustic excitations through a non-ideal phonon crystal (a system
of plane-parallel homogeneous layers with differing elastic ten-
sors). In doing so we largely rely on the ideology developed in Ref.
[2]. The employed virtual crystal approximation does not allow
the study of wave localization in disordered layered systems
(which is done in Refs. [7–9]) but is sufficient to evaluate the
forbidden acoustic zone width as a function of concentration of
impurity layers, which is the purpose of this paper.

2. The model

Consider a discretely-inhomogeneous acoustic medium con-
stituted by a set of alternating homogeneous plane-parallel layers
of two types, randomly substituted by impurity layers of the third
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type (Fig. 1). Same-parity layers have the same width and make a
sublattice.

In the general case of inhomogeneous medium, whose matter
density r r

!
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and elastic moduli L̂ r
!
� �

are the functions of
coordinates of the displacement field dynamics [13] is given by
the system of equations:
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From Eq. (1) it follows that if we restrict ourselves to the case
of monochromatic elastic excitations u
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the equation for amplitudes u
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For a translation invariant system of period d
!

, operator L̂,
tensor L̂ and density r r

!
� �

obey the relations
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and so rð r
!
Þ and L̂ð r

!
Þ can be expanded as the Fourier series in

vectors of the corresponding reciprocal lattice:
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In view of condition (4), the solutions of Eq. (3) have the Bloch
form as follows:
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Combining Eqs. (3), (5) and (6) yields the following system for
amplitudes U

!

K
! g
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Here Ailmð g
!
Þ and Biklmð g
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Þ are the Fourier coefficients of

functions Ailmð r
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Consider propagation of a monochromatic acoustic wave with
the Bloch vector K

!
¼ o,o,Kð Þ in a 1D phonon crystal (z-axis is

chosen to be normal to the layers). Tensor L̂ zð Þ and the matter
density r(z) which depend solely on z are related to the corre-
sponding layer-wise quantities as follows:
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In Eqs. (8) and (9) n is the number of elementary cell in the 1D
superlattice, a¼1,...,s is the number of cell element (a layer of
width ana). For an ideal 1D lattice of period d: r(z)¼r(zþd),
ana�aa, rna�ra (similar equalities hold for tensor L̂). In such a
case system (7) takes the form
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where g¼(2p/d)p (p¼0, 71, 72,...). It is easy to show that in
case the characteristic of layers of a 1D superlattice satisfies
condition (8), tensor Aizmð g

!
Þ becomes zero. Fourier-transform of

tensor B̂, obtained with the use of expression (9), has the form
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For isotropic layers of 1D phonon crystal tensor L̂ (which in
turn defines B̂) is [14]

Liklm ¼ ldikdlmþm ðdildkmþdimdklÞ, ð12Þ

where l and m are the Lamé coefficients.
Due to validity of Eq. (12), system (10) splits into two

independent subsystems. One of them contains only L99¼lþ2m
(and therefore, B99), and describes propagation of longitudinal
acoustic excitations. The second one contains only L?¼m (and
B?), and describes transversal excitations. Obviously, this splitting
is due to layers’ isotropy. In the general case of anisotropic layers
the modes are coupled, which leads to development of mixed
longitudinal-transverse excitations. However, for certain crystal
systems and under certain orientation of crystallographic axes
with respect to layers’ surface [15] the modes can be uncoupled
for the above form of K.

The laws of dispersion of the corresponding acoustic excita-
tions are defined by the infinite system of Eq. (10), which for the
general form of K is solved by approximate numerical methods
(similar to finding polariton excitations in dielectric superlattices
[1]). At the same time (as we shall see below) for K values close to
the Brillouin zone boundary,

K�
2p
d

����
����� K

� �

the dependence o¼o (K) can be expressed analytically. Indeed, it
can be seen from Eq. (10) that near the Brillouin zone the
quantities Ui

K ðgÞ are the biggest for g with p¼0,�1 provided that
o2EK2B99,?(0) (cf. (6.1.23) in Ref. [10]). Here B99,?(0)�B99,?(p¼0)
is the Fourier component which is easily obtainable from (11) and
(12). Keeping in system (10) only those terms corresponding to
resonance of the mentioned plane waves (p¼0,�1), we get the

Fig. 1. Problem scheme: a two-sublattice phonon crystal with randomly included

impurity layers.
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