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a b s t r a c t

The band structures and localization properties of in-plane elastic waves with coupling of longitudinal

and transverse modes oblique propagating in aperiodic phononic crystals based on Thue–Morse and

Rudin–Shapiro sequences are studied. Using transfer matrix method, the concept of the localization

factor is introduced and the correctness is testified through the Rytov dispersion relation. For

comparison, the perfect periodic structure and the quasi-periodic Fibonacci system are also considered.

In addition, the influences of the random disorder, local resonance, translational and/or mirror

symmetries on the band structures of the aperiodic phononic crystals are analyzed in this paper.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

Since the discovery of quasicrystals by Shechtman et al. [1] in
1984, aperiodic structures have been extensively studied and
many results have been obtained for electromagnetic waves (EW)
propagation in the so-called ‘‘aperiodic photonic crystals’’ [2–7].
In addition to the investigation of the electronic and optical
properties of these aperiodic systems, there is recently a growth
interest to study the elastic/acoustic properties of the ‘‘phononic
crystals’’ (PNCs), with various stacking order such as the periodic,
defected and random one been investigated both theoretically
and experimentally [8–13]. Compared to the periodic and random
phononic crystals, aperiodic phononic crystals (APNCs) share
distinctive physical properties with both periodic media, i.e. the
formation of well-defined band gaps, and disordered random
media, i.e. the presence of localized eigenstates, thus offering an
almost unexplored potential for the control and manipulation of
localized field states. Accordingly, the theoretical understanding
of the complex mechanisms governing elastic band gaps and
mode formation in aperiodic structures becomes increasingly
more important. Albuquerque [14] considered acoustic wave
propagation in a solid/liquid phononic Fibonacci structure.
Aynaou et al. [15] studied the propagation and localization of
acoustic waves in Fibonacci phononic circuits. Fang et al. [16]

discussed acoustic wave propagation in a quasi-periodic layered
spherical structure. In all of these studies, only longitudinal wave
characterized by transmission spectrum was considered by
assuming the wave propagation direction normal to layers.
Recently, Chen et al. [17] have used the well-defined localization
factor to examine the behaviors of elastic waves propagating
obliquely in a one-dimensional phononic quasicrystal. Coupling of
longitudinal and transversal elastic waves is involved in this case.
However, to the best of our knowledge, a rigorous investigation of
the band gaps and localization in more complex types of aperiodic
structures has not been reported so far.

In this paper we will discuss the band structures and localiza-
tion properties of aperiodic phononic crystals based on Thue–
Morse and Rudin–Shapiro sequences, which are less frequently
considered. In particular Rudin–Shapiro sequences exhibit pecu-
liar characteristics and are not covered by the theorems valid for
other sequences. The well-defined localization factor [18] is
introduced to study elastic wave propagation in these aperiodic
systems instead of calculating the transmission coefficients as did
in the previous publications [15,16]. The results show some
merits of the localization factor calculated using the transfer-
matrix method. For comparison, the band structures of the
crystals with perfect periodicity and Fibonacci sequence are also
discussed using the concept of the localization factor. The results
show that more band structures and wider band gaps generate
when aperiodicity is introduced to the phononic crystals. This
may be of practical importance not only because one expect to
tune the band structures, but also because we can thus control the
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propagation behavior of elastic waves by intentionally introdu-
cing the aperiodicity. In addition, the influences of the random
disorder, local resonance, translational and/or mirror symmetries
on the band structures of the APNCs are analyzed in this paper.

2. Theoretical method

The APNCs considered here are arranged as Thue–Morse (TM)
and Rudin–Shapiro (RS) sequences. These aperiodic structures can
be generated by their inflation rules, as follows: A-AB, B-BA

(TM) and AA-AAAB, AB-AABA, BA-BBAB, BB-BBBA (RS), where
A and B are sub-layers made up of different materials. Suppose
the thickness, Lamé constant, shearing modulus and mass density
of two different layers are aj, lj, mj and rj, respectively, where the
subscript j¼1 refers to material A and j¼2 to material B.

Let us consider an in-plane wave with coupling of longitudinal
and transverse modes oblique propagating in an arbitrary direc-
tion (01ryr901) in the above layered systems. For convenience,
we introduce two scalar potentials, j for the longitudinal mode
and c for the transversal mode [19], which satisfy the following
equations:

r
2j¼ c�2

L
€j,r2c¼ c�2

T
€c, ð1Þ
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¼@2/@x2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ2mÞ=r

p
and cT ¼
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p
are

the longitudinal and shear wave speeds, respectively. Introducing
the dimensionless local coordinates:

xj ¼ xj=a1,Zj ¼ yj=a1, ð2Þ

where a1 is the mean value of the thickness of material A.
Considering Eq. (2) and the Snell’s Law, we have the general
dimensionless solutions to Eq. (1):

jjðxj,Zj,tÞ ¼ ½A1expð�iqLjxjÞþA2expðiqLjxjÞ�expðikyZj�iotÞ,
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where 0rxjrzj ¼ aj=a1; i2¼�1; o is the circular frequency; ky is
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; A1, A2, B1 and B2 are the

unknown coefficients to be determined. For forming a state vector
in the following analysis, the dimensionless displacement and
stress components are given by
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We take the non-dimensional state vectors at the left and right

sides of each layer (A or B) in the kth unit cell as V ðkÞLj ¼ fs
ðkÞ
xLj,t

ðkÞ
yxLj,

vðkÞxLj,v
ðkÞ
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T and V ðkÞRj ¼ fs
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T
where the subscripts L

and R denote the left and right sides of the layers, respectively.
These two state vectors have the following relation:

V ðkÞjR ¼ T0jV
ðkÞ
jL , ð5Þ

where T
0

j is a 4�4 transfer matrix of which the elements are
shown in Ref. [20]. Applying the continuous conditions at the
interfaces between the two layers and between the two unit cells,
we have

V ðkÞ2R ¼ TkV ðk�1Þ
2R , ð6Þ

where Tk is the transfer matrix between two consecutive unit
cells and is given by

Tk ¼ T02T01: ð7Þ

Then the total transfer matrix is obtained as T¼ Tn

Tn�1 � � �Tk � � �T1. If the dimension of the transfer matrices is
2m�2m, then the smallest positive Lyapunov exponent gm is
the localization factor. The expression was given by Wolf [21]:

gm ¼ lim
n-1

1

n

Xn

k ¼ 1

lnJv̂
ðkÞ
2R,mJ, ð8Þ

where the vector v̂
ðkÞ
2R,m is obtained through iteration and

Gram–Schmidt orthonormalization procedures. For details, we
refer to Ref. [18].

3. Numerical examples and discussions

First, we consider the in-plane wave propagating with the
incident angle y¼401 along the Thue–Morse PNC, which is made
up of Pb and Epoxy. For comparison, the material parameters are
chosen as follows: r1¼11.4�103 kg/m3, r2¼1.2�103 kg/m3,
cL1¼2160 m/s, cL2¼2830 m/s, cT1¼860 m/s and cT2¼1160 m/s,
coincident with those recently demonstrated in Ref. [20]. The
thickness of each layer is normalized by a1 ¼ a1. We take
z1 ¼ a1=a1 ¼ 1:0 and z2 ¼ a2=a1 ¼ 0:5. For clarity, we introduce
the dimensionless frequencies: OL1 ¼oa1=cL1, OL2 ¼oa1=cL2,
OT1 ¼oa1=cT1 and OT2 ¼oa1=cT2. According to Eq. (8), n should
be infinity to calculate the localization factor. However, in
practical computation, a finite (but sufficiently large) number of
n has to be selected. Here, we select n¼128, 512, 1024 to discuss
the influence of the choice of n on accuracy of the localization
factor. As shown in Fig. 1, the values of the localization factors
become stable and the band gaps appear clearly with the increase
of n. Thus, we take 2048 layers (i.e. the 11�order aperiodic
sequence with 1�order¼AB) to carry out the computation.
Compared with the Fibonacci sequence (see Fig. 3 in Ref. [20]),
the Thue–Morse sequence exhibits more obvious band-splitting
phenomenon, i.e. almost all band gaps (the frequency intervals
with localization factors much bigger than zero) are split into
more parts and very narrow pass bands where the intervals with
localization factors being zero, (2.058, 2.18) and (9.71, 9,72), in
the Fibonacci sequence vanish in the Thue–Morse sequence.
Usually, the band gaps are studied by calculation of dispersion
relations or transmitted wave amplitudes. However, a new para-
meter-localization factor is introduced in this paper to describe
the band gaps. To check the validity of localization factors
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Fig. 1. Localization factors for in-plane waves propagating with the incident angle

401 in Thue–Morse phononic crystal calculated by choosing different values of n.
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