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a b s t r a c t

The exchange interactions (JBB and JAB are the intra and the inter-sublattice exchange interactions between

neighbouring spins, respectively) are obtained by using the general expressions of canting angle and critical

temperature obtained by mean field theory of Li0.5Fe2.5�2xAlxCrxO4. The expression of magnetic energy of

Li0.5Fe2.5�2xAlxCrxO4 is obtained for different spin configurations and dilution x. The saturation magnetisation

of Li0.5Fe2.5–2xAlxCrxO4 is obtained with different values of dilution x. The magnetic phase diagram of

Li0.5Fe2.5–2xAlxCrxO4 materials is obtained by high temperature series expansions (HTSEs). The critical

exponent associated with the magnetic susceptibility of Li0.5Fe2.5�2xAlxCrxO4 is deduced.

& 2012 Elsevier B.V. All rights reserved.

1. Introduction

The crystallographic and magnetic characteristics of the lithium
ferrite aluminates have been investigated [1,2] in an attempt to
understand the site preference for Al3þ and the magnetic interac-
tions in spinel lattice. The Mössbauer spectroscopic studies [3] of
lithium aluminates have shown the central quadrupole doublet
superimposed on a magnetic sextet and its intensity was sensitive
to Al concentration. The spinel ferrites with S-block ions studied here
are lithium ferrite [4]. The lithium ferrite of the composition
Li0.5Fe2.5O4 adopts an inverse spinel structure in which all the Liþ

ions and 3/5 of all Fe3þ ions occupy octahedral B-sites whilst the
remaining Fe3þ ions occupy tetrahedral A-sites [5–11]. The material
is extensively studied due to its technologically desirable electric and
magnetic properties that are susceptible to modification on introdu-
cing suitable cationic substitutes for the Fe3þ ions at the A- or/and
B-sub-lattice [1–7]. The magnitude and sign of the exchange con-
stants have been examined using Anderson’s theory of super-
exchange [12]. The magnitudes of the transfer integrals for different
exchange routes have been generally found to be in agreement with
the chemical theory of covalency [12]. The Li0.5Fe2.5�2xAlxCrxO4

system exhibits canted spin structure and a central paramagnetic
doublet was found superimposed on magnetic sextet in the
Mössbauer spectra (x40.5) [13].

In this work, we have used a critical temperature TC(K) and
canting angle (a) to determine the JAB and JBB exchange interac-
tions for a diluted spinels system Li0.5Fe2.5�2xAlxCrxO4. The
obtained results are given in Table 1 for 0rxr0.8. The ferrimag-
netic magnetic energy was calculated using the Becke’s three
parameter density functional [14]. The saturation magnetisation
in cation Li0.5Fe2.5�2xAlxCrxO4 is given (see Fig. 1).

The High temperatures series expansion (HTSEs) combined
with the Padé approximants methods are used to determine
the critical temperatures of Li0.5Fe2.5�2xAlxCrxO4 systems. By
applying this method to the magnetic susceptibility w(T), we
have estimated the critical temperature TC. The value of
critical exponents associated with the magnetic susceptibility is
obtained.

2. Theories

2.1. Calculation of the values of the exchange integrals

In order to deduce the expression of the susceptibility of the
system with two sublattices, the Hamiltonian of the Heisenberg
with external field hex may be put in the form:
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where S
!

and s! are spin vectors of magnitudes S
!2

¼ SðSþ1Þ and

s!
2
¼ sðsþ1Þ in sublattice A and B respectively. gA and gB are the

corresponding gyromagnetic factors and mB is the Bohr magneton.
The values of gyromagnetic factors gA and gB are gFe¼2.1 and
gCr¼1.98, respectively. hex is an external magnetic field (z direc-
tion) introduced in order to provide an easy determination of the
magnetic susceptibility. The first summation is over all spin pairs
nearest-neighbours in sublattice A, the second is over all spin
pairs nearest-neighbours in sublattice B and the third is between
all spin pair nearest-neighbours in A and B. JAA, JBB and JAB are the
intra and the inter-sublattice exchange interactions between
neighbouring spins. In this work, we considered JAA¼0.

The magnetisation of the ferrimagnetic spinels systems is:
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Therefore, according to the mean field theory the magnetisa-

tion contributed by Fe3þ sublattice M
!

A is:
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where ðhexÞFe is the effective field applied on Fe3þ local moment

BSA
ðSAgmBHFe=kBTÞ is the Brillouin function, M
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is the corresponding

magnetisation for one Fe3þ sublattice B1 and M
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for the other B2.
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where (hex)Cr is the effective field felt by one Cr3þ sublattice B2.
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kB is the Boltzmann’s constant. (hex)Cr is the effective field applied
for the other Cr3þ sublattice B2. After some simple treating of
Eqs. (3)–(5) give:
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The transition is at the temperature at which the determinant
of the coefficient matrix is zero. It is:
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The transition temperature TC(K) is:
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When Fe is partially substituted by Cr ions, the magnetism of A

sublattice is weakend, which can be viewed as an effective
decrease of the exchange energies. The critical temperature
TC(K) of Li0.5Fe2.5�2xAlxCrxO4 is:

Table 1
Critical temperature obtained by experiment and those obtained by mean field

theory (MFT), the canting angle (a), the exchange interactions JAB(x), JBB(x), and

JAB(x)/JBB(x) for Li0.5Fe2.5�2xAlxCrxO4.

x Ea
[13]

TC(K)

[13]

JAB(x) JBB(x) TC(K)

MFT

JAB(x)/JBB(x) JAB(x)/JBB(x)

[13]

0 0 945 61.40 40.94 943.67 1.50 –

0.4 17 662 74.84 55.31 658.38 1.35 1.36

0.5 26 572 79.80 63.47 567.14 1.28 1.25

0.6 27 530 95.70 78.32 522.30 1.22 1.21

0.8 33 398 173.80 159.53 363.68 1.09 1.08
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Fig. 1. Saturation magnetisation versus of dilution x for ½Fe3þ
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where SA¼SFe
3þ
¼5/2 and SB¼SCr

3þ
¼3/2.
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