Accepted Manuscript

Structural, magnetic and dielectric properties of Ni-Co doped ${\rm BiFeO}_3$ multiferroics synthesized via micro-emulsion route

Muhammad Asif, Mubashar Nadeem, Muhammad Imran, Sajjad Ahmad, Sara Musaddiq, Waseem Abbas, Zaheer Abbas Gilani, Muhammad Kashif Sharif, Muhammad Farooq Warsi, Muhammad Azhar Khan

PII: S0921-4526(18)30603-3

DOI: 10.1016/j.physb.2018.09.030

Reference: PHYSB 311070

To appear in: Physica B: Physics of Condensed Matter

Received Date: 14 July 2018

Accepted Date: 18 September 2018

Please cite this article as: Muhammad Asif, Mubashar Nadeem, Muhammad Imran, Sajjad Ahmad, Sara Musaddiq, Waseem Abbas, Zaheer Abbas Gilani, Muhammad Kashif Sharif, Muhammad Farooq Warsi, Muhammad Azhar Khan, Structural, magnetic and dielectric properties of Ni-Co doped BiFeO₃ multiferroics synthesized via micro-emulsion route, *Physica B: Physics of Condensed Matter* (2018), doi: 10.1016/j.physb.2018.09.030

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Structural, magnetic and dielectric properties of Ni-Co doped BiFeO₃ multiferroics synthesized via micro-emulsion route

Muhammad Asif*a, Mubashar Nadeem^b, Muhammad Imran^c, Sajjad Ahmad^c, Sara Musaddiq^d. Waseem Abbas^e, Zaheer Abbas Gilani^f, Muhammad Kashif Sharif^a, Muhammad Farooq Warsi^c Muhammad Azhar Khan*a

^aDepartment of Physics, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan

^bCAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei, Anhui Province, 230026, P.R. China

Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur-63100, Pakistan

^dDepartment of Chemistry, The women University Multan, Multan-66000, Pakistan

^eSchool of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China

^fDepartment of Physics, Balochistan University of Information Technology, Engineering & Management Sciences, Quetta 87300, Pakistan

*Corresponding Authors: <u>asifalikhan5678@gmail.com</u> , <u>azhar.khan@iub.edu.pk</u>

Phone: +92 3335121491, Fax: +92 62 9255474

Abstract

BiFe_{1-x}Ni_xCo_xO₃ multiferroics (x = 0.00, 0.05, 0.1, 0.15 and 0.2) were fabricated by microemulsion process. Differential scanning calorimeter (DSC) plot exhibited broad exothermic peaks at 264.33 °C and 320.8 °C. X-ray diffraction (XRD) patterns indicated the rhombohedral phase with the R3c phase group. The crystallite size ranges from 48 to 11 nm. Bulk and X-ray densities were optimized by increasing cobalt and nickel concentration. Magnetic parameters such as retentivity (M_r), saturation magnetization (M_s) and coercivity (H_c) were studied for different compositions of BiFe_{1-x}NixCo_xO₃. BiFe_{0.6}Ni_{0.4}Co_{0.4}O₃ behaves as ferromagnetic material having maximum saturation magnetization (10.6 emu/g) and maximum M_r (5.2 emu/g). Enhanced magnetic properties were attributed to the difference in magnetic moment of doping

Download English Version:

https://daneshyari.com/en/article/10714498

Download Persian Version:

https://daneshyari.com/article/10714498

<u>Daneshyari.com</u>