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a b s t r a c t

A formula is derived for the small-signal gain of a double-slab Cherenkov free-electron laser. The

simplified model is composed of a rectangular wave-guide partially filled with two lined parallel

dielectric slabs and a sheet electron beam. The theory describes the electron beam as a plasma dielectric

moving between the two dielectric slabs. With the help of hydrodynamic approximation, we derived the

dispersion equation and the formula of small-signal gain. Through numerical computing, we studied an

ongoing experiment of double-slab Cherenkov free-electron laser, and worked out the synchronous

frequency and single-pass gain.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

The interest on the terahertz radiation sources keeps growing
in recent years because this frequency provides wide applications
in medical, industrial and material science [1–4]. Currently, there
are several ways to produce terahertz radiation. Gas lasers are
commercially available and can provide hundreds of lines
between 40 and 1000mm, with power around 1 W, but they are
inherently not tunable. Solid-state terahertz sources usually are
driven by sub-picosecond optical laser pulses. For example, a
p-type Ge laser can be continuously tuned from 1 to 4 THz, but
they require a large external magnetic field, and have a limited
repetition rate because of crystal heating [5]. The electron beam-
driven radiation sources, such as free-electron lasers, gyrotrons
and synchrotrons, generate powerful terahertz wave with an
average power of kW [6–8], but they need large facilities. A typical
terahertz free-electron laser facility developed at KAERI [9] can
provide the radiation wavelength from 100 to 300mm, and it
requires magnetic undulator and a microtron accelerator to serve
an �6 MeV electron beam. The Cherenkov free-electron lasers
have an advantage over the usual undulator free-electron lasers,
and they can generate terahertz radiation with low-energy
electron beam [10].

We plan to construct a compact terahertz Cherenkov free-
electron laser with moderate (�10 mW) average power. To achieve
this goal, a compact electron beam source is being developed, and

a double-slab Cherenkov free-electron laser resonator is being
studied. To perform a preliminary lasing experiment, this
resonator is designed to generate the millimeter wave. The device
is composed of a rectangular wave-guide loaded with double
dielectric slabs, and between them is the vacuum space for
electron beam to go through. The slab is with a thickness of
650mm and the vacuum width is 1000mm. The overall length of
the resonator is 11 cm. The dielectric medium is chosen as silicon
since it has a relatively high dielectric constant, er ¼ 11.6, with
which the device can produce radiation from millimeter to
terahertz wave. The electron beam source generates a round
beam with an average radius of 300mm. The maximum beam
current is 1 mA, and the energy ranges from 30 up to 50 keV.

In this paper, we aim to analyse the dispersion relation and the
small-signal gain for the double-slab Cherenkov device. Based on
the hydrodynamic model, the dispersion equation is derived and
solved numerically, as well as the single-pass gain is worked out
for the parameters of our preliminary experiment.

2. Theory

The schematic drawing of the double-slab Cherenkov free-
electron laser is shown in Fig. 1. It is a two-dimensional model.
A sheet electron beam with limited thickness travels in the
vacuum area between the dielectric slabs; outside the dielectric
slabs is the pad of perfect conductor. Only the TM mode is
considered to propagate along the wave-guide and it is described
by the z component of the magnetic vector potential; we study the
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single-pass gain, so that the reflection of the feedback circuit is
not taken into account. It is assumed that all fields are
independent of the y-coordinate and the electrons are confined
to move in the z-direction. We further assume that the vector
potential be with the form of Az(x,z,t) ¼ Az(x)e�jkzeiot. From the
hydrodynamic Maxwell equations, it is straightforward to obtain
the wave equation including the electron beam effect, and it reads

d2

dx2
þ

o2

c2
� k2

� �
1�

o2
p

g3ðo� kv0Þ
2

 ! !
AzðxÞ ¼ 0, (1)

where op is the plasma frequency, v0 the electron beam velocity,
g the relativistic factor and c the light velocity in vacuum. The
expressions of the electric field and magnetic field can be derived
through ~B ¼ r �~A and ~E ¼ �jo A

*

�r �j, where j is the scalar
potential that can be achieved by Lorentz gauge. The interaction
area is divided into five regions as noted in Fig. 1. By solving
Eq. (1), we derived the electromagnetic fields in the electron beam
region (1) and they are
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In the vacuum regions (2) and (3), the electron beam vanishes
and Eq. (1) becomes simple by ob ¼ 0, then the electromagnetic
fields read

Ez;2 ¼
c2G2

2

jo ðC2;1 sinðG2xÞ þ C2;2 cosðG2xÞÞ (4)

Hy;2 ¼
G2

m0

ð�C2;1 cosðG2xÞ þ C2;2 sinðG2xÞÞ (5)

and

Ez;3 ¼
c2G2

3

jo
ðC3;1 sinðG3xÞ þ C3;2 cosðG3xÞÞ (6)

Hy;3 ¼
G3

m0

ð�C3;1 cosðG3xÞ þ C3;2 sinðG3xÞÞ (7)

where G2
2
¼ G3

2
¼ o2/c2

�k2.

In a similar way in the dielectric regions (4) and (5), the
electromagnetic fields are expressed as

Ez;4 ¼
c2G2

4

jo�r
ðC4;1 sinðG4xÞ þ C4;2 cosðG4xÞÞ (8)

Hy;4 ¼
G4

m0

ð�C4;1 cosðG4xÞ þ C4;2 sinðG4xÞÞ (9)

and
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where G4
2
¼ G5

2
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�k2.
Considering the boundary conditions, at x ¼ g+h and

x ¼ �(g+h), the tangential electric field should be zero, i.e.,
Ez,4 ¼ Ez,5 ¼ 0, then we get

C4;2 ¼ �C4;1 tanðG4ðg þ hÞÞ (12)

C5;2 ¼ C5;1 tanðG5ðg þ hÞÞ (13)

Due to the continuity of electromagnetic field, we have
Ez,2 ¼ Ez,4, Hy,2 ¼ Hy,4 at x ¼ g. And considering Eq. (12), we get

G2
2ðC2;1 sinðG2gÞ þ C22 cosðG2gÞÞ ¼ C4;1

G2
4

�r
ðsinðG4gÞ

� tanðG4ðg þ hÞÞ cosðG4gÞÞ
(14)

G2ð�C2;1 cosðG2gÞ þ C22 sinðG2gÞÞ ¼ C4;1G4ð� cosðG4gÞ

� tanðG4ðg þ hÞÞ sinðG4gÞÞ
(15)

Let us combine Eqs. (14) and (15) into a single equality, and it
reads

C2;1ðsinðG2gÞ þM cosðG2gÞÞ þ C2;2ðcosðG2gÞ �M sinðG2gÞÞ ¼ 0

(16)

where

M ¼
G4

G2�r

sinðG4gÞ � tanðG4ðg þ hÞÞ cosðG4gÞ

� cosðG4gÞ � tanðG4ðg þ hÞÞ sinðG4gÞ

In a similar way, for the boundary of x ¼ �g, by using Ez,3 ¼ Ez,5,
Hy,3 ¼ Hy,5 and expression (13), we get

C3;1ð� sinðG3gÞ � N cosðG3gÞÞ þ C3;2ðcosðG3gÞ � N sinðG3gÞÞ ¼ 0

(17)

where

N ¼
G5

G3�r

sinðG5gÞ � tanðG5ðg þ hÞÞ cosðG5gÞ

� cosðG5gÞ � tanðG5ðg þ hÞÞ sinðG5gÞ
.

Based on the continuity of electromagnetic field at x ¼7d, i.e.,
Ez,1 ¼ Ez,2, Hy,1 ¼ Hy,2, Ez,1 ¼ Ez,3 and Hy,1 ¼ Hy,3, the following
expressions are achieved:

C1;1G2
1 sinðG1dÞ þ C1;2G2

1 cosðG1dÞ

þ C2;1ð�G2
2 sinðG2dÞÞ þ C2;2ð�G2

2 cosðG2dÞÞ ¼ 0 (18)

C1;1ð�G1 cosðG1dÞÞ þ C1;2G1 sinðG1dÞ

þ C2;1G2 cosðG2dÞ þ C2;2ð�G2 sinðG2dÞÞ ¼ 0 (19)

C1;1G2
1 sinðG1dÞ þ C1;2G2

1 cosðG1dÞ

þ C3;1G2
3 sinðG3dÞ þ C2;2ð�G2

3 cosðG3dÞÞ ¼ 0 (20)
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Fig. 1. The schematic of double-slab Cherenkov free-electron laser.
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