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An−1 Gaudin model with open boundaries
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Abstract

The An−1 Gaudin model with integrable boundaries specified by non-diagonal K-matrices is studied.
The commuting families of Gaudin operators are diagonalized by the algebraic Bethe ansatz method. The
eigenvalues and the corresponding Bethe ansatz equations are obtained.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Gaudin type models constitute a particularly important class of one-dimensional many-body
systems with long-range interactions. They have found applications in many branches of fields
ranging from condensed matter physics to high energy physics. For example, Gaudin models
have been used to establish the integrability of the reduced BCS theory of small metallic grains
[1–4] and the Seiberg–Witten supersymmetric Yang–Mills theory [5]. They have also provided a
powerful tool for constructing the solutions to the Knizhnik–Zamolodchikov equation [6–10] of
the Wess–Zumino–Novikov–Witten conformal field theory.

Recently Gaudin models with non-trivial boundaries have attracted much interest [9,11–15].
So far, attention has largely been concentrated on Gaudin models with boundary conditions spec-
ified by diagonal K-matrices. In [12], the XXZ Gaudin model with boundaries given by the
non-diagonal K-matrices in [16,17] was constructed and solved by the algebraic Bethe ansatz
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method. In this paper we generalize the results in [12] and solve the An−1 Gaudin magnets with
open boundary conditions corresponding to the non-diagonal K-matrices obtained in [18].

This paper is organized as follows. In Section 2, we briefly review the inhomogeneous A
(1)
n−1

trigonometric vertex model with integrable boundaries, which also services as introducing our
notation and some basic ingredients. In Section 3, we construct the generalized Gaudin operators
associated with non-diagonal K-matrices. The commutativity of these operators follows from
applying the standard procedure [9,11,19,20] to the inhomogeneous A

(1)
n−1 trigonometric vertex

model with off-diagonal boundaries found in [18], thus ensuring the integrability of the Gaudin
magnets. In Section 4, we diagonalize the Gaudin operators simultaneously by means of the
algebraic Bethe ansatz method. This constitutes the main new result of this paper. The diagonal-
ization is achieved by means of the technique of the “vertex-face” transformation [21]. Section 5
is for conclusions. In Appendix A, we list the explicit matrix expressions of the K-matrices cor-
responding to the n = 3,4 cases.

2. Preliminaries: inhomogeneous A
(1)
n−1 open chain

Let us fix a positive integer n (n � 2) and a generic complex number η, and R(u) ∈ End(Cn ⊗
C

n) be the R-matrix of the A
(1)
n−1 trigonometric vertex model given by [22–24]

(2.1)R(u) =
n∑

α=1

Rαα
αα(u)Eαα ⊗ Eαα +

∑
α �=β

{
R

αβ
αβ (u)Eαα ⊗ Eββ + R

βα
αβ (u)Eβα ⊗ Eαβ

}
,

where Eij is the matrix with elements (Eij )
l
k = δjkδil . The coefficient functions are

(2.2)R
αβ
αβ (u) =

⎧⎪⎨
⎪⎩

sin(u)
sin(u+η)

e−iη, α > β,

1, α = β,
sin(u)

sin(u+η)
eiη, α < β,

(2.3)R
βα
αβ (u) =

⎧⎪⎨
⎪⎩

sin(η)
sin(u+η)

eiu, α > β,

1, α = β,
sin(η)

sin(u+η)
e−iu, α < β.

The R-matrix satisfies the quantum Yang–Baxter equation (QYBE)

(2.4)

R12(u1 − u2)R13(u1 − u3)R23(u2 − u3) = R23(u2 − u3)R13(u1 − u3)R12(u1 − u2),

and the properties [18]:

(2.5)Unitarity: R12(u)R21(−u) = id,

(2.6)

Crossing-unitarity: R
t2
12(u)M−1

2 R
t2
21(−u − nη)M2 = sin(u) sin(u + nη)

sin(u + η) sin(u + nη − η)
id,

(2.7)Quasi-classical property: R12(u)
∣∣
η→0 = id .

Here R21(u) = P12R12(u)P12 with P12 being the usual permutation operator and ti denotes the
transposition in the ith space, and η is the so-called crossing parameter. The crossing matrix M



Download English Version:

https://daneshyari.com/en/article/10721229

Download Persian Version:

https://daneshyari.com/article/10721229

Daneshyari.com

https://daneshyari.com/en/article/10721229
https://daneshyari.com/article/10721229
https://daneshyari.com

