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We study the thermodynamics of some cosmological models based on modified gravity, a braneworld
with induced gravity and curvature effect. Dark energy component seems necessary if the models are to
approach thermal equilibrium in the long run.
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1. Introduction

Supernovae type Ia data [1] as well as other observational
probes [2] show that the Universe is undergoing an accelerated
phase of expansion at present time, a feature that does not emerge
from standard cold dark matter model [3]. Attempts to explain
such unexpected behaviour go towards modifications of either the
geometric part of the Einstein field equations, implying modified
theories of gravity, or the matter sector, thus involving new and
sometimes weird forms of energy [4]. Such a dark sector seems
unavoidable in order to fit present cosmological data.

On the other hand, from the theoretical side, the strong mathe-
matical resemblance between the dynamics of spacetime horizons
and thermodynamics is strongly attested [5,6] so that gravitational
fields equations can be given a physical interpretation which is
thermodynamical in origin. In particular, the Friedmann equations
follow from applying the first law to the apparent horizon of an
isotropic and homogeneous universe, not only in Einstein gravity,
but also in more general Lovelock gravity [7]. Likewise, it seems
that a gravitational theory built on the principle of equivalence
must be thought of as a macroscopic limit of some underlying
microscopic theory, the microscopic structure of spacetime man-
ifesting itself only at Planck scale or near singularities. Also the
horizons link some aspects of microscopic physics with the bulk
dynamics [8]. It is well known since long that one can define en-
tropy and temperature for a spacetime horizon [9–11]; in fact,
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many attempts have been done to better understand this link.
An instructive example is the case of spherically symmetric hori-
zons in four dimensions, for which Einstein’s equations can be
interpreted as a thermodynamic relation arising out of virtual dis-
placement of the horizon [12]. Moreover, the same interpretation
holds for the case of the Lanczos–Lovelock gravitational theory in
D dimensions [13] and explicit demonstration has been given for
Friedmann models [14].

In the present Letter, following this deep relation between ther-
modynamic and gravity, and in particular between entropy and
horizons, we argue that some form of dark energy is demanded
on thermodynamic grounds.

In order for an isolated system to evolve to thermodynamical
equilibrium, the entropy function of the system must show two
properties: it must never decrease, i.e. its first derivative with re-
spect to the relevant variable must be non-negative, and convex,
i.e., its second derivative must be negative.

This constitutes the hard core of the second law of thermo-
dynamics and it is naturally realised in systems dominated by
electromagnetic forces; however it might not be true when gravity
plays a role. In fact, the entropy of the system must still increase
but it may be grow unbounded: this occurs, in the Newtonian
framework, for the Antonov’s sphere, the final stage of N gravi-
tating point masses enclosed in a perfectly reflecting, rigid, sphere
whose radius exceeds some critical value [15,16]. Nevertheless,
when we replace Newtonian gravity by general relativity, a black
hole is expected to be formed at the center of the sphere that,
though it tends to evaporate, it will likely arrive to an equilibrium
state characterised by a state of maximum, finite, entropy.

In any case, in a Friedmann–Robertson–Walker (FRW) cosmol-
ogy, the Universe seems to behave as an ordinary system whose
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entropy increases towards a maximum value. The latter follows
from the observational data on the evolution of the Hubble fac-
tor of the FRW metric [17] and from the evolution of the entropy
of the apparent horizon, that seems to be the appropriate thermo-
dynamic boundary [18].

The present Letter is a second step of the analysis outlined
above. In fact, in a previous paper [19] we showed that an Einstein
Universe, as a thermodynamical system, cannot tend to equilibrium
in the last stage of expansion unless it accelerates. We have found
that this holds true for some modified models that are dynami-
cally equivalent at the background level, nevertheless this does not
mean that every accelerating universe is thermodynamically moti-
vated [19].

In this work we study the thermodynamical behaviour of a
braneworld model with two correction terms: a four-dimensional
curvature on the brane and a Gauss–Bonnet (GB) term in the
bulk [20]. The induced gravity (IG) correction arises because the
localised matter fields on the brane, which couple to bulk gravi-
tons, can generate via quantum loops a localised four-dimensional
world-volume kinetic term for gravitons [21]. On the other hand,
a Gauss–Bonnet term naturally appears in an effective action ap-
proach to string theory, corresponding to the leading order quan-
tum corrections to gravity [22]. As a result, we have the most
general action with second-order field equations in five dimen-
sions [23].

Section 2 introduces the braneworld cosmology with induced
gravity and curvature effects. Sections 2.2 and 2.3 focus on the
entropy of the horizon and matter components, respectively. The
energy components of the Universe are assumed to enter the field
equations in the form of perfect fluids, the standard equation of
state being true for each of them: pi = wiρi . Then, in Section 3,
the matter component is assumed as cold matter and a Chaplygin
gas. The choice of a Chaplygin gas is based on the recent observa-
tional result that the equation of state parameter of dark energy
can be less than −1 and even display a transient behaviour [2].
This can be achieved either by means of phantom fields, that
on the other hand suffer from instabilities [24], or by other ap-
proaches that mimic this phantom-like behaviour. In the model
under analysis, in which UV modifications are included by con-
sidering the stringy effect via the GB term in the bulk, and IR
modifications are due to the IG effect, a Chaplygin gas fluid on
the brane provides a smooth crossing of the cosmological constant
line [25]. In fact, this component is characterised by a cross-over
length scale below which the gas behaves as pressureless fluid and
above which it mimics a cosmological constant.

Our conclusions are given in Section 4: we find that even this
modified theory of gravity needs a component with typical dark
energy behaviour in order to satisfy the generalised second law
(GSL) and approach thermodynamical equilibrium in the long run.

2. Gauss–Bonnet and induced gravity corrections

The total action of the braneworld model under consideration
reads [20]

I = 1

2κ2
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√
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where Λ5 < 0 is the cosmological constant on the bulk and

LGB = (5)R2 − 4(5)RAB (5)RAB + (5)RABCD(5)RABCD (2)

is the GB correction term, whose coupling constant α = 1/8g2
s is

related to the string energy scale, gs [20]. The gravitational cou-

pling constants κ2
4 = 8πG4 and κ2

5 = 8πG5 on the brane and in
the bulk, respectively introduce a length scale, the induced gravity
cross-over scale, r = κ2

5 /2κ2
4 and help defining the brane tension,

λ = Λ4/κ
2
4 . Last term represents matter action.

2.1. Cosmological equations

The metric of homogeneous and isotropic FRW Universe on the
brane, with spatial curvature index k, is

ds2 = hμν dxμ dxν + r̃2[dθ2 + sin θ2 dφ2], (3)

where r̃ = a(t)r, the two-dimensional metric is hμν = diag(−1,

a2/(1 − kr2)) with x0 = t and x1 = r. This allows the explicit
evaluation of the radius of the apparent horizon (a marginally
trapped surface with vanishing expansion) determined by the rela-
tion hμν∂μr̃∂ν r̃ = 0 [26] that gives

r̃ A = 1√
H2 + k

a2

. (4)

Friedmann’s equation on the brane is
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in which, assuming there is no black hole in the bulk, Φ0 =
1

4α (−1 +
√

1 + 4
3 αΛ5 ) and matter field are supposed to be perfect

fluids with energy density ρi so that in order to describe com-
pletely the cosmological dynamics on the brane we can use the
energy conservation law

ρ̇i + 3Hρi(1 + wi) = 0, (6)

where wi = pi/ρi = const.

2.2. Entropy of the apparent horizon

The entropy on the apparent horizon is given by [27–29]:
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Its derivatives with respect to the scale factor a, that will be
denoted by a prime, can be calculated and simplified by using
Eqs. (5)–(6)
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, (8)
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[
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]
, (9)

where w T = pT /ρT = ∑
i pi/

∑
i ρi .

It can be easily checked that the entropy grows provided the
fluids component of the Universe satisfy w T > −1. In order to
evaluate the second derivative we make use of the late time be-
haviour of this brane cosmology with curvature correction that, as
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