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We examine a cosmological model with a dark energy density of the form ρDE(t) = ρX (t) +ρZ (t), where
ρX is the component that accelerates the Hubble expansion at late times and ρZ (t) is an extra contribu-
tion proportional to H2(t). This form of ρZ (t) follows from the recent proposal that the contribution of
zero-point fluctuations of quantum fields to the total energy density should be computed by subtracting
the Minkowski-space result from that computed in the FRW space–time. We discuss theoretical argu-
ments that support this subtraction. By definition, this eliminates the quartic divergence in the vacuum
energy density responsible for the cosmological constant problem. We show that the remaining quadratic
divergence can be reabsorbed into a redefinition of Newton’s constant only under the assumption that
∇μ〈0|Tμν |0〉 = 0, i.e. that the energy–momentum tensor of vacuum fluctuations is conserved in isolation.
However in the presence of an ultra-light scalar field X with mX < H0, as typical of some dark energy
models, the gravity effective action depends both on the gravitational field and on the X field. In this
case general covariance only requires ∇μ(T X

μν + 〈0|Tμν |0〉). If there is an exchange of energy between
these two terms, there are potentially observable consequences. We construct an explicit model with an
interaction between ρX and ρZ and we show that the total dark energy density ρDE(t) = ρX (t) + ρZ (t)
always remains a finite fraction of the critical density at any time, providing a specific model of early
dark energy. We discuss the implication of this result for the coincidence problem and we estimate the
model parameters by means of a full likelihood analysis using current CMB, SNe Ia and BAO data.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the origin of dark energy is one of the most im-
portant challenges facing cosmology and theoretical physics (see
e.g. [1–4]). One aspect of the problem is to understand what
is the role of zero-point vacuum fluctuations in cosmology. In a
Friedmann–Robertson–Walker (FRW) metric with Hubble parame-
ter H(t) the bare vacuum energy density takes the form[
ρbare(Λc)

]
FRW = [

ρbare(Λc)
]

Mink + O
(

H2(t)Λ2
c

)
, (1)

where [ρbare(Λc)]Mink is the bare vacuum energy density in
Minkowski space, whose leading divergence is O(Λ4

c ), and we
used for definiteness a momentum space cutoff Λc . In the usual
treatment this Λ4

c divergence is reabsorbed into a renormalization
of the cosmological constant, giving rise to the cosmological con-
stant problem. The divergence ∝ H2Λ2

c is instead absorbed into a
renormalization of Newton’s constant G [5,6].

In this Letter, expanding on results presented in [7], we reex-
amine the role of vacuum energies in cosmology. First, we will
propose theoretical arguments suggesting that the correct way of
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computing the physical vacuum energy is to subtract the bare vac-
uum energy density of Minkowski space, [ρbare(Λc)]Mink, from the
FRW result given in Eq. (1), before renormalizing the result. By
definition this subtraction eliminates the troublesome Λ4

c diver-
gence and, therefore, the cosmological constant problem. Then we
turn our attention to the left over term H2Λ2

c which now becomes
the leading term in the vacuum energy. It is usually believed that
this quadratic divergence can be reabsorbed into a renormalization
of G . We show that this is correct only under the assumption that
vacuum expectation value (VEV) of the energy–momentum ten-
sor is conserved in isolation (an assumption that was implicit in
the literature). However, general covariance of General Relativity
(GR) only implies the conservation of the total energy–momentum
tensor Tμν + 〈0|Tμν |0〉, including both the classical term Tμν

and the semiclassical term 〈0|Tμν |0〉. The separate conservation
of 〈0|Tμν |0〉 only takes place if we can define an effective action
which depends only on the gravitational field, by integrating out
the matter degrees of freedom. This is possible only if the mat-
ter degrees of freedom are heavy with respect to the energy scale
of the problem, and can then be integrated out. In a cosmologi-
cal setting, this means that matter fields should satisfy m > H0.
If, in contrast, there is an ultra-light scalar fields with m < H0,
as is typical of some quintessence model, this field cannot be inte-
grated out from the effective low energy action. We show that, as a
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result, in general ∇μT X
μν = −∇μ〈0|Tμν |0〉 �= 0. In this case the ef-

fect of the quadratically divergent term in the vacuum fluctuations
cannot simply be absorbed into a renormalization of Newton’s con-
stant G , and gives rise to interesting and potentially detectable
cosmological effects. We construct a specific coupled early dark en-
ergy model and test it against current observations.

We use natural units where h̄ = c = 1, G = M−2
Pl . If not specified

otherwise, we work in a spatially flat FRW metric with signature
(−+++), cosmic time t , scale factor a(t) and Hubble parame-
ter H(t) = (da/dt)/a. Today, the Hubble parameter and the critical
density take the values H0 and ρ0 = 3H2

0/(8πG), respectively.

2. Subtraction of the flat-space vacuum energy

In Minkowski space the divergence in the vacuum energy den-
sity is usually dealt with by normal ordering the Hamiltonian,
which gives by definition a vanishing result for the physical vac-
uum energy density. However, it is useful to realize that the prob-
lem can be treated more generally in the context of renormaliza-
tion theory, which rather allows us to fix the renormalized vacuum
energy density to any observed value. In the standard language
of renormalization, divergences in a generic N-point Green’s func-
tion are cured by adding the corresponding counterterms to the
Lagrangian density. The same procedure can be applied to vacuum
energy, i.e. to the N = 0 Green’s function: one simply adds a con-
stant counterterm −ρcount(Λc) to the Lagrangian density. This cor-
responds to adding a term +ρcount(Λc) to the Hamiltonian density.
Hence the renormalized, physical vacuum energy density is given
by ρren = ρbare(Λc)+ρcount(Λc). As always in renormalization the-
ory, the counterterm ρcount is chosen so to cancel the divergences
in ρbare and leave us with the desired finite part that is fixed by
comparison with the experiment.

Using the language of renormalization theory is useful in this
context because it makes clear that the cosmological constant
problem is not that quantum field theory (QFT) gives a wrong
prediction for the cosmological constant (as it is sometimes in-
correctly said). Strictly speaking QFT makes no prediction for the
cosmological constant, just as it does not predict the electron mass
nor the fine structure constant. Rather, it is a problem of nat-
uralness, in the sense that the counterterm ρcount(Λc) must be
fine-tuned to exceeding accuracy, in order to cancel the Λ4

c di-
vergence in ρbare, leaving a physical vacuum energy density that,
if one identifies Λc with the Planck mass, is about O(10120) times
smaller than Λ4

c .
Posing the problem in terms of a cancellation between

ρbare(Λc) and ρcount(Λc) can also give a first hint for a possible
solution. First of all, one should appreciate that neither the bare
vacuum energy ρbare(Λc) nor the counterterm ρcount(Λc) have a
physical meaning and only their sum is an observable. Thus, this
kind of cancellation is different from a fine-tuning between observ-
able quantities. Indeed, the Casimir effect is a well-known example
where a rather similar cancellation takes place. In that case the
physical vacuum energy density of a quantum field in a finite
volume is found by taking the difference between the bare vac-
uum energy density computed in this finite volume and the bare
vacuum energy density in an infinite volume. Regularizing with a
cutoff Λc both terms diverge as Λ4

c , but their difference is finite
and depends only on the physical size of the system. This might
suggest that, similarly, to obtain the physical effect of the vacuum
energy density in cosmology, one should compute the vacuum en-
ergy density in a FRW space–time and subtract from it the value
computed in a reference geometry, which could be naturally taken
as Minkowski space, leading to a sort of “cosmological Casimir ef-
fect”.

Before taking this analogy with the Casimir effect seriously, one
must however face the obvious objection that in special relativity
the zero of the energy can be chosen arbitrarily, and only energy
differences with respect to the ground state are relevant.1 In con-
trast, in GR we cannot chose the zero of the energy arbitrarily. One
typically expects that “every form of energy gravitates”, so the con-
tribution of Minkowski space cannot just be dropped.

While it is certainly true that in GR the choice of the zero for
the energy is not arbitrary, the point that we wish to make here
is that what is the correct choice can be a non-trivial issue. As a
first example, consider the definition of energy for asymptotically
flat space–times. This is obtained from the Hamiltonian formu-
lation of GR, which goes back to the classic paper by Arnowitt,
Deser and Misner (ADM) [8,9]. To properly define the Hamiltonian
of a given field configuration in GR one must work at first in a fi-
nite three-dimensional volume V . Then the Hamiltonian takes the
form HGR = Hbulk + Hboundary, where Hbulk is given by an integral
over the spatial volume V at fixed time, while Hboundary is given
by an integral over the two-dimensional boundary ∂V . When one
evaluates Hbulk on any classical solution of the equations of mo-
tion one finds a vanishing result (since Hbulk is proportional to
the constraint equations of GR), so the whole contribution comes
from the boundary term. On the other hand, Hboundary diverges
for any asymptotically flat metric gμν (including flat space–time),
when the boundary is finally taken to infinity. The solution pro-
posed by ADM is to subtract from this boundary term the same
term computed in Minkowski space ημν . Accordingly, the energy
E associated with a classical asymptotically flat metric gμν is ob-
tained by defining

E = HGR[gμν ] − HGR[ημν ]. (2)

This provides the standard definition of mass in GR, and repro-
duces the expected properties of asymptotically flat space–times.
For instance, when applied to the Schwarzschild space–time, it cor-
rectly gives the mass that appears in the Schwarzschild metric.
This underlines that our intuition that any form of energy gravi-
tates according to GR is not entirely correct: Eq. (2) tells us that
the energy associated to Minkowski space does not gravitate.

Similar subtractions also hold for non-asymptotically flat space–
times, and can be performed either by subtracting the contribu-
tion of some reference space–time whose boundary has the same
induced metric as the background under consideration [10–13],
or even without introducing a reference background but just by
adding some local counterterms to the boundary action, given by a
coordinate-invariant functional of the intrinsic boundary geometry
[14,15]. The latter prescription is particularly appealing for asymp-
totically AdS space–times. In fact, in the context of the AdS/CFT
correspondence, this way of removing divergences in the gravita-
tional action on the AdS side corresponds to the renormalization of
the UV divergences in the conformal QFT that lives on the bound-
ary [14–18].

These examples show that, already in classical GR, the energy
that actually acts as a source of gravity can be obtained from a
Hamiltonian only after performing an appropriate subtraction. It is
quite natural to assume that the same should hold at the quan-
tum level, so in particular for zero-point fluctuations of quantum
fields in curved space. To understand what is the appropriate sub-
traction for the FRW metric, we consider the Friedmann equation
that results from the Einstein equations sourced by T μ

ν + 〈0|T μ
ν |0〉,

1 Equivalently, one may observe that in the Casimir effect one actually measures
the force between the plates, i.e. not the energy density itself but only its derivative
w.r.t. the size of the system L. Since the divergence Λ4

c is independent of L, it can
simply be dropped.
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