Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Constraining new physics in $B^0 \rightarrow \pi^+\pi^-$ with reparametrization invariance and QCD factorization

Patricia Ball, Aoife Bharucha*

IPPP, Department of Physics, University of Durham, Durham DH1 3LE, UK

ARTICLE INFO

ABSTRACT

 $\pi^+\pi^-$.

Article history: Received 14 July 2009 Received in revised form 28 September 2009 Accepted 7 October 2009 Available online 9 October 2009 Editor: G.F. Giudice

PACS: 13.25.Hw 11.30.Er 12.15.Hh 12.60.-i

Keywords: B-Physics CP violation Beyond Standard Model

One of the greatest successes of the *B* factories BaBar and Belle is the precise determination of the CP-violating phase ϕ_d in *B* mixing [1]. In the Standard Model (SM), and using the Wolfenstein parametrization of the CKM matrix, ϕ_d is related to β , one of the angles of the unitarity triangle, as $\phi_d = 2\beta$. As *B* mixing is a loop process, the experimentally determined angle ϕ_d might in fact not equal 2β , but be polluted by the effects of new-physics (NP) particles propagating in loops, thereby contributing an additional CP violating phase, see for instance Ref. [2]. It is therefore of considerable interest to study any methods by which one can constrain an additional NP contribution to ϕ_d . In this Letter we shall show that the process $B^0 \rightarrow \pi^+\pi^-$ can be used to this effect.

The set of neutral and charged $B \rightarrow \pi \pi$ decays has been extensively studied as a means of determining the angle α (or γ) of the unitarity triangle. The lack of a theoretically clean calculation of the strong amplitudes and phases involved can be overcome by exploiting isospin symmetry, see Ref. [3], commonly referred to as the Gronau–London method. It involves relating the various

E-mail addresses: Patricia.Ball@durham.ac.uk (P. Ball), a.k.m.bharucha@durham.ac.uk (A. Bharucha).

experimental observables (branching ratios and CP asymmetries) in $B \to \pi\pi$ to extract both the hadronic amplitudes determining these decays and the weak phase α . As an alternative to isospin, and in order to avoid $B^0 \to \pi^0\pi^0$ decays, the use of U-spin has been explored in Refs. [4] to extract γ from $B^0 \to \pi^+\pi^-$ and the U-spin related decay $B_s \to K^+K^-$. In a conceptionally different approach the relevant strong amplitudes are calculated (as opposed to extracted from experiment), using QCD factorization (QCDF) [5– 8] or effective field theory methods (SCET) [9]. The advantage here is that less experimental input is needed, the disadvantage that the calculation is performed in a limit of QCD where the *b* quark is assumed to be very heavy. In any case, all these analyses put the emphasis on constraining the angles γ or α .

Usually, $B^0 \rightarrow \pi^+\pi^-$ decays are expressed in terms of weak amplitudes explicitly dependent on the

CKM weak phase α or γ . In this Letter, we show that the weak amplitudes can be rewritten such that

a manifest dependence on β emerges instead. Based on this, we constrain new-physics contributions

to the CP-violating phase ϕ_d in $B^0 - \bar{B}^0$ mixing. Further, we apply reparametrization invariance and use

QCD factorization predictions to investigate the bounds on an additional new-physics amplitude in $B^0 \rightarrow$

In this Letter, we show that it is possible to express the decay amplitude in terms of ϕ_d and β , without any explicit reference to the angles α or γ . In the SM, the resulting expression allows the extraction of the relevant hadronic parameters from $B^0 \rightarrow \pi^+\pi^-$ data alone, which can be compared to the theoretical calculation in QCDF. Beyond the SM, we study the possible presence of NP in this decay, which might contribute through $B^0-\bar{B}^0$ mixing via a NP contribution to ϕ_d or through an additional NP amplitude.

We begin with a reminder of the parametrization used to extract γ . The amplitude for $\bar{B}^0 \rightarrow \pi^+\pi^-$ is given in the form:

© 2009 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

^{0370-2693/\$ –} see front matter $\ \textcircled{}$ 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.physletb.2009.10.022

Table 1CKM parameters used in this Letter.

Parameter	Value	Source
λ	$0.2257^{+0.0009}_{-0.0010}$	PDG [10]
V _{cb}	$(41.2 \pm 1.1) \times 10^{-3}$	PDG [10]
$ V_{ub} $	$(3.93\pm0.36)\times10^{-3}$	PDG [10]
$\beta_{b \to ccs}$	$(21.1 \pm 0.9)^{\circ}$	HFAG [1]
β_{tree}	$(23.9 \pm 3.3)^{\circ}$	this Letter, Eq. (16)
γ	$(77^{+30}_{-32})^{\circ}$	PDG [10]
R _b	0.412 ± 0.039	this Letter, Eq. (6)
$\left \frac{V_{td}}{V_{ta}}\right $	0.214 ± 0.005	[11]
R_t	0.928 ± 0.024	this Letter, Eq. (10)

$$\mathcal{A}(\bar{B}^0 \to \pi^+ \pi^-) = \lambda_c A_c + \lambda_u A_u, \tag{1}$$

where $\lambda_q = V_{qd}^* V_{qb}$, and A_c , A_u are strong amplitudes. A_u is dominated by tree diagrams, whereas the only contributions to A_c are from penguin diagrams. The corresponding time-dependent CP asymmetry is given by:

$$A_{\pm}(t) = \frac{\Gamma(B^{0}(t) \to \pi^{+}\pi^{-}) - \Gamma(\bar{B}^{0}(t) \to \pi^{+}\pi^{-})}{\Gamma(B^{0}(t) \to \pi^{+}\pi^{-}) + \Gamma(\bar{B}^{0}(t) \to \pi^{+}\pi^{-})}$$

= $C_{\pm} \cos(\Delta m t) - S_{\pm} \sin(\Delta m t).$ (2)

The experimental observables C_{\pm} and S_{\pm} can be expressed in terms of λ_{\pm} :

$$S_{\pm} = \frac{2 \operatorname{Im}(\lambda_{\pm})}{1 + |\lambda_{\pm}|^2}, \qquad C_{\pm} = \frac{1 - |\lambda_{\pm}|^2}{1 + |\lambda_{\pm}|^2}, \tag{3}$$

where λ_{\pm} is given by

$$\lambda_{\pm} = e^{-i\phi_d} \frac{\mathcal{A}(\bar{B}^0 \to \pi^+ \pi^-)}{\mathcal{A}(B^0 \to \pi^+ \pi^-)}.$$
(4)

Parametrizing the amplitudes as in Eq. (1), we have

$$\lambda_{\pm} = e^{-i\phi_d} \frac{e^{-i\gamma} - re^{i\delta}}{e^{i\gamma} - re^{i\delta}} \tag{5}$$

with $re^{i\delta} = A_c/(A_u R_b)$, $\gamma = \arg(-\lambda_c/\lambda_u)$ and

$$R_b = \left| \frac{\lambda_u}{\lambda_c} \right| = \frac{1 - \lambda^2 / 2}{\lambda} \frac{|V_{ub}|}{|V_{cb}|}.$$
(6)

Numerical values for these and other CKM-related quantities are collected in Table 1. The observables S_{\pm} and C_{\pm} are given by

$$S_{\pm} = -\frac{\sin(\phi_d + 2\gamma) - 2r\sin(\phi_d + \gamma)\cos\delta + r^2\sin\phi_d}{1 - 2r\cos\gamma\cos\delta + r^2},\tag{7}$$

$$C_{\pm} = -\frac{2r\sin\gamma\sin\delta}{1 - 2r\cos\gamma\cos\delta + r^2}.$$
(8)

In the absence of penguin contributions, r = 0 and the determination of $\phi_d + 2\gamma$ would be completely analogous to that of ϕ_d from $B^0 \rightarrow J/\psi K_S$. Realistically, r is expected to be a small, but nonzero number, which makes the extraction of γ more challenging.

We now show how a different parametrization of the decay amplitude (1) replaces the explicit dependence of λ_{\pm} on γ by one on β . Using $\beta = \arg(-\lambda_t/\lambda_c)$, one can trade the dependence on γ for one on β by exploiting the unitarity of the CKM matrix and exchanging λ_u for $-\lambda_c - \lambda_t$:

$$\mathcal{A}(\bar{B}^0 \to \pi^+ \pi^-) = \lambda_c B_c + \lambda_t B_t = \lambda_c (B_c - R_t e^{i\beta} B_t), \qquad (9)$$

where $B_c = A_c - A_u, B_t = -A_u$ and

$$R_t = \left| \frac{\lambda_t}{\lambda_c} \right| = \frac{1}{\lambda} \frac{|V_{td}|}{|V_{ts}|} \left\{ 1 - \frac{1}{2} (1 - 2R_b \cos \gamma) \lambda^2 + O\left(\lambda^4\right) \right\}.$$
(10)

Experimental results for S_{\pm} , C_{\pm} from BaBar and Belle and the HFAG average.

Experiment	S_{\pm}	C_{\pm}
BaBar [14] Belle [15] HFAG [1]	$\begin{array}{c} -0.68 \pm 0.10 \pm 0.03 \\ -0.61 \pm 0.10 \pm 0.04 \\ -0.65 \pm 0.07 \end{array}$	$\begin{array}{c} -0.25\pm 0.08\pm 0.02\\ -0.55\pm 0.08\pm 0.05\\ -0.38\pm 0.06\end{array}$

Note that B_c and B_t are both dominated by tree-level decays as they both contain A_u .

With this parametrization of the decay amplitude, λ_\pm becomes

$$\lambda_{\pm} = e^{-i\phi_d} \left(\frac{1 - R_t R_{tc} e^{i\beta}}{1 - R_t R_{tc} e^{-i\beta}} \right) \tag{11}$$

$$=e^{-i\phi_d}\left(\frac{1-de^{i\theta_d}e^{i\beta}}{1-de^{i\theta_d}e^{-i\beta}}\right),\tag{12}$$

where $R_{tc} = B_t/B_c$ and $d = |R_t R_{tc}|$, $\theta_d = \arg(R_t R_{tc})$. Note that unlike r, d is not suppressed, but expected to be of order 1 (as R_t is also close to 1). The CP-violating observables in (3) now read

$$S_{\pm} = \frac{d^2 \sin(2\beta - \phi_d) + 2d \cos\theta_d \sin(\phi_d - \beta) - \sin(\phi_d)}{d^2 - 2d \cos\beta \cos\theta_d + 1},$$
 (13)

$$C_{\pm} = -\frac{2d\sin\beta\sin\theta_d}{d^2 - 2d\cos\beta\cos\theta_d + 1}.$$
(14)

Obviously (13), (14) are not independent of (7), (8), but related by the unitarity constraint

$$R_t e^{i\beta} + R_b e^{-i\gamma} - 1 = 0.$$
(15)

The advantage of expressing S_{\pm} and C_{\pm} in terms of β instead of γ is that, at least in the SM, there is now only one manifest weak phase. This implies that, with R_t determined from *B* mixing, both *d* and θ_d can be extracted from experiment and compared to theoretical calculations, for example QCDF. This is independent of any information from the decay $B^0 \rightarrow \pi^0 \pi^0$ whose branching ratio continues to be difficult to understand in the framework of QCDF or SCET.

The most accurate measurement of ϕ_d is via mixing in B^0 decays to CP eigenstates of charmonium. The CP asymmetry averaged over these channels provides a direct measurement of $\sin \phi_d = 0.673 \pm 0.023$, so that in the SM $\beta = (21.1 \pm 0.9)^{\circ}$ [1].¹ It is also possible to derive β from tree-process measurements only, based on γ and $|V_{ub}|$. Taking γ and $|V_{ub}|$ from Ref. [10], see Table 1, we find β_{tree} using

$$\sin \beta_{\text{tree}} = \frac{R_b \sin \gamma}{\sqrt{1 - 2R_b \cos \gamma + R_b^2}},$$

$$\cos \beta_{\text{tree}} = \frac{1 - R_b \cos \gamma}{\sqrt{1 - 2R_b \cos \gamma + R_b^2}},$$
(16)

which results in $\beta_{\text{tree}} = (23.9^{+3.4}_{-3.2})^{\circ}$ (in the following analysis we use $\beta_{\text{tree}} = (23.9 \pm 3.3)^{\circ}$). Both values of β are compatible with each other, but we will use the latter one to obtain constraints on a NP contribution to ϕ_d .

From the experimental data collected in Table 2, we find the values of *d* and θ_d given in Table 3. The high quality of the experimental results leads to small uncertainties on *d*, typically 5%, and

¹ There is an ambiguity in this result, as $\beta = (68.9 \pm 1.0)^{\circ}$ is also a solution. However, this is excluded at the 95% confidence level by a Dalitz plot analysis of $B^0 \rightarrow \bar{D}^0 h^0$ where $h^0 = \pi^0$, ω , η [12], and by a time-dependent angular analysis of $B^0 \rightarrow J/\psi K^{*0}$ [13].

Download English Version:

https://daneshyari.com/en/article/10722160

Download Persian Version:

https://daneshyari.com/article/10722160

Daneshyari.com