PHYSICS LETTERS B

Constraining new physics in $B^{0} \rightarrow \pi^{+} \pi^{-}$with reparametrization invariance and QCD factorization

Patricia Ball, Aoife Bharucha*
IPPP, Department of Physics, University of Durham, Durham DH1 3LE, UK

A R T I C L E I N F O

Article history:

Received 14 July 2009
Received in revised form 28 September 2009
Accepted 7 October 2009
Available online 9 October 2009
Editor: G.F. Giudice

PACS:

13.25.Hw
11.30.Er
12.15.Hh
12.60.-i

Keywords:
B-Physics
CP violation
Beyond Standard Model

Abstract

Usually, $B^{0} \rightarrow \pi^{+} \pi^{-}$decays are expressed in terms of weak amplitudes explicitly dependent on the CKM weak phase α or γ. In this Letter, we show that the weak amplitudes can be rewritten such that a manifest dependence on β emerges instead. Based on this, we constrain new-physics contributions to the CP-violating phase ϕ_{d} in $B^{0}-\bar{B}^{0}$ mixing. Further, we apply reparametrization invariance and use QCD factorization predictions to investigate the bounds on an additional new-physics amplitude in $B^{0} \rightarrow$ $\pi^{+} \pi^{-}$.

© 2009 Elsevier B.V. All rights reserved.

One of the greatest successes of the B factories BaBar and Belle is the precise determination of the CP -violating phase ϕ_{d} in B mixing [1]. In the Standard Model (SM), and using the Wolfenstein parametrization of the CKM matrix, ϕ_{d} is related to β, one of the angles of the unitarity triangle, as $\phi_{d}=2 \beta$. As B mixing is a loop process, the experimentally determined angle ϕ_{d} might in fact not equal 2β, but be polluted by the effects of new-physics (NP) particles propagating in loops, thereby contributing an additional CP violating phase, see for instance Ref. [2]. It is therefore of considerable interest to study any methods by which one can constrain an additional NP contribution to ϕ_{d}. In this Letter we shall show that the process $B^{0} \rightarrow \pi^{+} \pi^{-}$can be used to this effect.

The set of neutral and charged $B \rightarrow \pi \pi$ decays has been extensively studied as a means of determining the angle α (or γ) of the unitarity triangle. The lack of a theoretically clean calculation of the strong amplitudes and phases involved can be overcome by exploiting isospin symmetry, see Ref. [3], commonly referred to as the Gronau-London method. It involves relating the various

[^0]experimental observables (branching ratios and CP asymmetries) in $B \rightarrow \pi \pi$ to extract both the hadronic amplitudes determining these decays and the weak phase α. As an alternative to isospin, and in order to avoid $B^{0} \rightarrow \pi^{0} \pi^{0}$ decays, the use of U-spin has been explored in Refs. [4] to extract γ from $B^{0} \rightarrow \pi^{+} \pi^{-}$and the U-spin related decay $B_{s} \rightarrow K^{+} K^{-}$. In a conceptionally different approach the relevant strong amplitudes are calculated (as opposed to extracted from experiment), using QCD factorization (QCDF) [58] or effective field theory methods (SCET) [9]. The advantage here is that less experimental input is needed, the disadvantage that the calculation is performed in a limit of QCD where the b quark is assumed to be very heavy. In any case, all these analyses put the emphasis on constraining the angles γ or α.

In this Letter, we show that it is possible to express the decay amplitude in terms of ϕ_{d} and β, without any explicit reference to the angles α or γ. In the SM, the resulting expression allows the extraction of the relevant hadronic parameters from $B^{0} \rightarrow \pi^{+} \pi^{-}$ data alone, which can be compared to the theoretical calculation in QCDF. Beyond the SM, we study the possible presence of NP in this decay, which might contribute through $B^{0}-\bar{B}^{0}$ mixing via a NP contribution to ϕ_{d} or through an additional NP amplitude.

We begin with a reminder of the parametrization used to extract γ. The amplitude for $\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}$is given in the form:

Table 1
CKM parameters used in this Letter.

Parameter	Value	Source
λ	$0.2257_{-0.00010}^{+0.009}$	PDG [10]
$\left\|V_{c b}\right\|$	$(41.2 \pm 1.1) \times 10^{-3}$	PDG [10]
$\left\|V_{u b}\right\|$	$(3.93 \pm 0.36) \times 10^{-3}$	PDG [10]
$\beta_{b \rightarrow c c s}$	$(21.1 \pm 0.9)^{\circ}$	HFAG [1]
$\beta_{\text {tree }}$	$(23.9 \pm 3.3)^{\circ}$	this Letter, Eq. (16)
γ	$\left(77_{-32}^{+30}\right)^{\circ}$	PDG [10]
R_{b}	0.412 ± 0.039	this Letter, Eq. (6)
$\left\|V_{t d}\right\|$	0.214 ± 0.005	[11]
V_{t}	0.928 ± 0.024	this Letter, Eq. (10)

$\mathcal{A}\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)=\lambda_{c} A_{c}+\lambda_{u} A_{u}$,
where $\lambda_{q}=V_{q d}^{*} V_{q b}$, and A_{c}, A_{u} are strong amplitudes. A_{u} is dominated by tree diagrams, whereas the only contributions to A_{c} are from penguin diagrams. The corresponding time-dependent CP asymmetry is given by:

$$
\begin{align*}
A_{ \pm}(t) & =\frac{\Gamma\left(B^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)-\Gamma\left(\bar{B}^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)}{\Gamma\left(B^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)+\Gamma\left(\bar{B}^{0}(t) \rightarrow \pi^{+} \pi^{-}\right)} \\
& =C_{ \pm} \cos (\Delta m t)-S_{ \pm} \sin (\Delta m t) \tag{2}
\end{align*}
$$

The experimental observables $C_{ \pm}$and $S_{ \pm}$can be expressed in terms of $\lambda_{ \pm}$:
$S_{ \pm}=\frac{2 \operatorname{Im}\left(\lambda_{ \pm}\right)}{1+\left|\lambda_{ \pm}\right|^{2}}, \quad C_{ \pm}=\frac{1-\left|\lambda_{ \pm}\right|^{2}}{1+\left|\lambda_{ \pm}\right|^{2}}$,
where $\lambda_{ \pm}$is given by
$\lambda_{ \pm}=e^{-i \phi_{d}} \frac{\mathcal{A}\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)}{\mathcal{A}\left(B^{0} \rightarrow \pi^{+} \pi^{-}\right)}$.
Parametrizing the amplitudes as in Eq. (1), we have
$\lambda_{ \pm}=e^{-i \phi_{d}} \frac{e^{-i \gamma}-r e^{i \delta}}{e^{i \gamma}-r e^{i \delta}}$
with $r e^{i \delta}=A_{c} /\left(A_{u} R_{b}\right), \gamma=\arg \left(-\lambda_{c} / \lambda_{u}\right)$ and
$R_{b}=\left|\frac{\lambda_{u}}{\lambda_{c}}\right|=\frac{1-\lambda^{2} / 2}{\lambda} \frac{\left|V_{u b}\right|}{\left|V_{c b}\right|}$.
Numerical values for these and other CKM-related quantities are collected in Table 1. The observables $S_{ \pm}$and $C_{ \pm}$are given by
$S_{ \pm}=-\frac{\sin \left(\phi_{d}+2 \gamma\right)-2 r \sin \left(\phi_{d}+\gamma\right) \cos \delta+r^{2} \sin \phi_{d}}{1-2 r \cos \gamma \cos \delta+r^{2}}$,
$C_{ \pm}=-\frac{2 r \sin \gamma \sin \delta}{1-2 r \cos \gamma \cos \delta+r^{2}}$.
In the absence of penguin contributions, $r=0$ and the determination of $\phi_{d}+2 \gamma$ would be completely analogous to that of ϕ_{d} from $B^{0} \rightarrow J / \psi K_{S}$. Realistically, r is expected to be a small, but nonzero number, which makes the extraction of γ more challenging.

We now show how a different parametrization of the decay amplitude (1) replaces the explicit dependence of $\lambda_{ \pm}$on γ by one on β. Using $\beta=\arg \left(-\lambda_{t} / \lambda_{c}\right)$, one can trade the dependence on γ for one on β by exploiting the unitarity of the CKM matrix and exchanging λ_{u} for $-\lambda_{c}-\lambda_{t}$:
$\mathcal{A}\left(\bar{B}^{0} \rightarrow \pi^{+} \pi^{-}\right)=\lambda_{c} B_{c}+\lambda_{t} B_{t}=\lambda_{c}\left(B_{c}-R_{t} e^{i \beta} B_{t}\right)$,
where $B_{c}=A_{c}-A_{u}, B_{t}=-A_{u}$ and
$R_{t}=\left|\frac{\lambda_{t}}{\lambda_{c}}\right|=\frac{1}{\lambda} \frac{\left|V_{t d}\right|}{\left|V_{t s}\right|}\left\{1-\frac{1}{2}\left(1-2 R_{b} \cos \gamma\right) \lambda^{2}+O\left(\lambda^{4}\right)\right\}$.

Table 2
Experimental results for $S_{ \pm}, C_{ \pm}$from BaBar and Belle and the HFAG average.

Experiment	$S_{ \pm}$	$C_{ \pm}$
BaBar [14]	$-0.68 \pm 0.10 \pm 0.03$	$-0.25 \pm 0.08 \pm 0.02$
Belle [15]	$-0.61 \pm 0.10 \pm 0.04$	$-0.55 \pm 0.08 \pm 0.05$
HFAG [1]	-0.65 ± 0.07	-0.38 ± 0.06

Note that B_{c} and B_{t} are both dominated by tree-level decays as they both contain A_{u}.

With this parametrization of the decay amplitude, $\lambda_{ \pm}$becomes

$$
\begin{align*}
\lambda_{ \pm} & =e^{-i \phi_{d}}\left(\frac{1-R_{t} R_{t c} e^{i \beta}}{1-R_{t} R_{t c} e^{-i \beta}}\right) \tag{11}\\
& =e^{-i \phi_{d}}\left(\frac{1-d e^{i \theta_{d}} e^{i \beta}}{1-d e^{i \theta_{d}} e^{-i \beta}}\right), \tag{12}
\end{align*}
$$

where $R_{t c}=B_{t} / B_{c}$ and $d=\left|R_{t} R_{t c}\right|, \theta_{d}=\arg \left(R_{t} R_{t c}\right)$. Note that unlike r, d is not suppressed, but expected to be of order 1 (as R_{t} is also close to 1). The CP-violating observables in (3) now read
$S_{ \pm}=\frac{d^{2} \sin \left(2 \beta-\phi_{d}\right)+2 d \cos \theta_{d} \sin \left(\phi_{d}-\beta\right)-\sin \left(\phi_{d}\right)}{d^{2}-2 d \cos \beta \cos \theta_{d}+1}$,
$C_{ \pm}=-\frac{2 d \sin \beta \sin \theta_{d}}{d^{2}-2 d \cos \beta \cos \theta_{d}+1}$.
Obviously (13), (14) are not independent of (7), (8), but related by the unitarity constraint
$R_{t} e^{i \beta}+R_{b} e^{-i \gamma}-1=0$.
The advantage of expressing $S_{ \pm}$and $C_{ \pm}$in terms of β instead of γ is that, at least in the SM, there is now only one manifest weak phase. This implies that, with R_{t} determined from B mixing, both d and θ_{d} can be extracted from experiment and compared to theoretical calculations, for example QCDF. This is independent of any information from the decay $B^{0} \rightarrow \pi^{0} \pi^{0}$ whose branching ratio continues to be difficult to understand in the framework of QCDF or SCET.

The most accurate measurement of ϕ_{d} is via mixing in B^{0} decays to CP eigenstates of charmonium. The CP asymmetry averaged over these channels provides a direct measurement of $\sin \phi_{d}=$ 0.673 ± 0.023, so that in the $\operatorname{SM} \beta=(21.1 \pm 0.9)^{\circ}[1] .{ }^{1}$ It is also possible to derive β from tree-process measurements only, based on γ and $\left|V_{u b}\right|$. Taking γ and $\left|V_{u b}\right|$ from Ref. [10], see Table 1, we find $\beta_{\text {tree }}$ using
$\sin \beta_{\text {tree }}=\frac{R_{b} \sin \gamma}{\sqrt{1-2 R_{b} \cos \gamma+R_{b}^{2}}}$,
$\cos \beta_{\text {tree }}=\frac{1-R_{b} \cos \gamma}{\sqrt{1-2 R_{b} \cos \gamma+R_{b}^{2}}}$,
which results in $\beta_{\text {tree }}=\left(23.9_{-3.2}^{+3.4}\right)^{\circ}$ (in the following analysis we use $\left.\beta_{\text {tree }}=(23.9 \pm 3.3)^{\circ}\right)$. Both values of β are compatible with each other, but we will use the latter one to obtain constraints on a NP contribution to ϕ_{d}.

From the experimental data collected in Table 2, we find the values of d and θ_{d} given in Table 3. The high quality of the experimental results leads to small uncertainties on d, typically 5%, and

[^1]
https://daneshyari.com/en/article/10722160

Download Persian Version:
https://daneshyari.com/article/10722160

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: Patricia.Ball@durham.ac.uk (P. Ball), a.k.m.bharucha@durham.ac.uk (A. Bharucha).

[^1]: ${ }^{1}$ There is an ambiguity in this result, as $\beta=(68.9 \pm 1.0)^{\circ}$ is also a solution. However, this is excluded at the 95% confidence level by a Dalitz plot analysis of $B^{0} \rightarrow \bar{D}^{0} h^{0}$ where $h^{0}=\pi^{0}, \omega, \eta$ [12], and by a time-dependent angular analysis of $B^{0} \rightarrow J / \psi K^{* 0}[13]$.

