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1. Introduction

The idea of multidimensional space-time allows to clarify some
fundamental questions, such as the problems of modern cosmology
and the Standard Model which are discussed in terms of extra-
dimensional gravity [1-7]. As was shown in [8], the numerical
values of the fundamental parameters depend on geometry of ex-
tra dimensions. The existence of gauge symmetries may be related
to isometries of extra space [8-10]. Hereinafter we consider com-
pact d-dimensional extra spaces in the spirit of the Universal Extra
Dimensions (UED). It is supposed that symmetries of extra space
are related to the low energy symmetries in the observable Uni-
verse. The size of extra dimensions varies in the wide range from
the Planck scale up to 10718 c¢m, the upper limit known from the
particle physics. This approach is similar to the UED one though
no fields except metric tensor are considered. An applicability of
the results discussed below to another approaches like ADD [1]
and Randall-Sundrum models [3] is the subject of future investi-
gations.

(Maximally) symmetric metrics of extra space as a starting
point are among the most popular in the literature, see e.g. [10-
12]. This assumption makes it possible to obtain clear and valuable
results. At the same time we must take into account the quantum
origin of space itself due to fluctuations in the space-time foam.
There is no reason to assume that the geometry or/and topology
of extra space is simple [13,14]. Moreover it seems obvious that a
measure 91 of all symmetrical spaces equals zero so that the prob-
ability of their nucleation P = 0. Hence some period of extra space
symmetrization ought to exist [8,15-18].

In the present Letter we investigate the entropic mechanism of
space symmetrization after its nucleation. It is shown that the sta-
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bilization of the extra space and its symmetrization are proceeding
simultaneously. This process is accompanied by a decrease in en-
tropy for the extra space and an increase in entropy for main one.

2. Time dependence of compact space geometry

As was mentioned above some mechanism of the extra space
symmetrization should exist. In this section we consider some toy
models to clarify the situation.

As a common basis, consider a Riemannian manifold

TxMxM (1

with the metric

ds® = GagdX? dxB
=dt® — gmn(t, X) dX™ dX" — yau(t, x, y) dy dy". )

Here M, M’ are the manifolds with spacelike metrics gmp(t, x) and
Yab(t, X, y) respectively, T denotes the timelike direction. The set
of coordinates of the subspaces M is denoted by x; y is the same
for M’. We will refer to M and M’ as a main space and a compact
extra space respectively. The curvature of the manifold is assumed
to be arbitrary.

Firstly, consider the (d + 1)-dimensional compact manifold
M’ x T with metric

dsz :dtz - Vab(t, y)dyadyba )/ab()’»t) = nﬂb +hab(t» .V)

For the Einstein-Hilbert action

S:/ddydt [vIR (3)

and in the limit hg, < 1, classical equations have the form [9]

Od+1hap =0, (4)
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where

1 1
Ogs1 = —0 30) + —30 g, 5
d+1 7 o (VY o)+\/7 (/7Y ) (5)
This wave equation has no static symmetrical solutions if initial
conditions are arbitrary. This would mean the absence of symme-
tries even in the modern epoch, which is unacceptable.

The situation changes considerably if we take into account the
dynamics of the main manifold M. Let it possess the Friedmann-
Robertson-Walker (FRW) metric and the scale factor a(t) (we as-
sume a(t) > 0). If our Universe plays the role of the manifold M
the latter statement is just the observable fact. The equation of
motion for the metrics of the extra space M’ acquires the form

Odt1hap +3Hhgy =0, (6)

where the Hubble parameter H = d/a > 0. We also took into ac-
count the form of metrics (2) and equality

! d0/g 361 3H>0 (7)
——=0vE =5 = >

V& a
valid for 4-dimensional FRW space. The term 3Hf1ab in (6) indi-
cates the presence of friction and gives the asymptotic y,, — const
for t - +o0.

So the dynamics of the main space M could cause the stabi-
lization of the extra space M’. Note that friction usually means
entropy increasing in any system.

As a more complex and valuable example consider a gravity
with higher order derivatives and the action in the form

S :/dD“z«/Ef(R), (8)

where z=(t,x, y) and G = |det g-det y|. The metric of extra space
(2) is chosen in the form Y, = yap(t, y). We also use inequality

Ry < Ry 9)

for the Ricci scalar of the main space Ry and the Ricci scalar
of the extra space Ryy. It is known that in the framework of
D-dimensional gravity linear in the Ricci scalar the stabilization
of an extra space is impossible without involving additional fields
[16,19,20]. On the other side a D-dimensional gravity with higher
derivatives gives such an opportunity. The process of stabilization
of the extra space is discussed in the papers [18,21] where it
was shown that a stationary size of extra space depends on its
dimensionality and initial parameters of the pure gravitational La-
grangian.

Recall that action (8) is equivalent to linear action with an ad-
ditional scalar field [21-23]

S= / dPHZVE[R@G) + GPoupdpe — 2U(9)], (10)
where
1., _ [D-1
p=2InfR). A=~ (11)
_ Lo-8s Ab _ __Pb+1
Up) = e [R(®)e f(R@)], B—m. (12)

The details can be found in the papers cited above. The classical
equation of motion of action (10) has the form

¢ +3H¢ + Oap1¢ + U'($) =0, (13)

where metric (2), equality (7) and definition (5) are taken into ac-
count. As in the previous cases, the term containing the Hubble
parameter H is responsible for friction in the system.

Let the potential (12) has a minimum at ¢,. Due to the
presence of the friction, the additional scalar field ¢ tends to a
constant. According to (11) the Ricci scalar of the extra space
is connected to the scalar field and also tends to a stationary
value,

R — R(¢m). (14)

The observed main space is described by the FRW metric and its
Ricci scalar tends to zero, Ry ~ 1/a(t — 00)? — 0 so that we may
neglect its contribution at large times. Thus the extra space M’
acquires a maximally symmetrical form.

As in the previous case, see (6), it is the dynamics of the main
space that is responsible for the friction in the extra space and its
stabilization. This indicates the presence of entropy flow from the
extra space M’ to the main one M [24,25].

3. Entropy and symmetry formation

In the previous section we saw that stabilization of extra space,
an extension of its symmetry group and an entropy increase in
a whole space proceed simultaneously. Below we show that the
entropy of a compact extra space is decreasing with time. To this
end we prove the following

Statement. Let M be a smooth manifold, G and G, are two given met-
rics on it. If the number of Killing vectors of metric G is less then the
number of Killing vectors of metric G, then the entropy of G1 is greater
than the entropy of G».

Proof. We will use the well-known definition of the Boltzmann
entropy S. It links entropy to a number of microstates §2, S =
kg In £2. Other definitions are discussed in [26,27] for example.

Let us consider a compact smooth manifold M. We suppose
that every metric G on M defines a microstate. More definitely,
two metrics G; and G, on M define the same microstate if and
only if they are equal in each of the points P € M.

The definition of a macrostate is as follows. Let v be an ar-
bitrary smooth vector field defined globally on the smooth mani-
fold M. Any shift along the integral path of vector field v corre-
sponds to a diffeomorphism M on itself. We define a macrostate
as a set of metrics G that are connected by shifts. As an example,
a 2-dim torus with a bulge, being shifted, still represents the same
macrostate. Another macrostate is determined by the addition of
another bulge. So this definition seems reasonable.

The statistical weight of a given macrostate is the number of
microstates. The latter is a continuum set for any classical system.
The concept of microstates is correctly defined at a quantum level
where the set of energy levels is known. However, the quantization
of geometry is a yet unsolved problem. That is why any discussion
of a metric on scale less than the Planck scale Lp is pointless.
Thus shifts less than Planck scale should not be taken into account
when counting statistical weight (see discussion in [28]). Therefore
a number of shifts along various integral paths is assumed to be
finite.

Let us compare statistical weights of two metrics G; and G
with the same number of shifts at manifold M. Let G; have no
Killing vectors and G, possesses a global Killing field. Shifts along
Killing vector of G, lead to the same microstate by definition. So
the statistical weight of G; is greater than the statistical weight
of G,. A similar argument is correct in the general case as well
when the number of Killing vectors of metrics G1 is less then the
number of Killing vectors of metrics G,. This statement is also
valid for the entropy which is the nondecreasing function of the
statistical weight. Therefore
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