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Based on QCD sum rules we explore the consequences of a scenario for the ρ meson, where the chiral
symmetry breaking condensates are set to zero whereas the chirally symmetric condensates remain
at their vacuum values. This clean-cut scenario causes a lowering of the ρ spectral moment by about
120 MeV. The complementarity of mass shift and broadening is discussed. A simple parametrization of
the ρ spectral function leads to a width of about 280 MeV if no shift of the peak position is assumed.
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1. Introduction

The impact of chiral symmetry restoration on the properties of
hadrons is a much debated issue. In particular light vector mesons
have been studied extensively both on the theoretical and the
experimental side; for recent reviews see e.g. [1–6]. In fact, in-
medium modifications of hadrons made out of light quarks and
especially their possible “dropping masses” are taken often synony-
mously for chiral restoration. The Brown–Rho scaling conjecture [7]
and Ioffe’s formula for the nucleon [8] suggest such a tight connec-
tion. However, experimentally the main observation of in-medium
changes of light vector mesons via dilepton spectra is a significant
broadening of the spectral shape [9,10]. Such a broadening can be
obtained in hadronic many-body approaches, e.g., [11–17], which
at first sight are not related directly to chiral restoration in the
above spirit. Pion dynamics and resonance formation, both fixed
to vacuum data, provide the important input for such many-body
calculations. Clearly the pion dynamics is closely linked to the vac-
uum phenomenon of chiral symmetry breaking, but the connection
to chiral restoration is not so clear. For the physics of resonances
the connection is even more loose. There are recent approaches
which explain some hadronic resonances as dynamically generated
from chiral dynamics [18–24], but again this primarily points to-
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wards an intimate connection between hadron physics and chiral
symmetry breaking whereas effects of the chiral restoration tran-
sition on hadron physics remain open. As suggested, e.g., in [25,
26] the link to chiral restoration might be indirect: The in-medium
broadening could be understood as a step towards deconfinement.
In the deconfined quark–gluon plasma also chiral symmetry is pre-
sumed to be restored. All these considerations suggest that the link
between chiral restoration and in-medium changes of hadrons is
more involved as one might have hoped.

Additional input could come from approaches which are closer
to QCD than standard hadronic models. One such approach is the
QCD sum rule method [27–31]. A somewhat superficial view on
QCD sum rules for vector mesons seems to support the original
picture of an intimate connection between chiral restoration and
in-medium changes. Here the previously popular chain of argu-
ments goes as follows: (1) Four-quark condensates play an impor-
tant role for the vacuum mass of the light vector mesons [27,28].
(2) The four-quark condensates factorize into squares of the two-
quark condensate [32]. (3) The two-quark condensate decreases in
the medium due to chiral restoration [33,34]. (4) Thus the four-
quark condensates decrease in the medium accordingly. (5) There-
fore the masses of light vector mesons change (decrease) in the
medium due to chiral restoration.

Before we critically assess this line of reasoning an additional
remark concerning four-quark condensates is in order: In [27,28]
it is shown that the vector meson mass emerges from a subtle
balance between the gluon and four-quark condensates. In that
sense four-quark condensates are important. There are, however,

0370-2693/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2012.02.007

http://dx.doi.org/10.1016/j.physletb.2012.02.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:t.hilger@fzd.de
http://dx.doi.org/10.1016/j.physletb.2012.02.007


T. Hilger et al. / Physics Letters B 709 (2012) 200–206 201

approaches (employing, e.g. finite energy sum rules) which de-
duce ρ meson properties without using the four-quark conden-
sates, see, e.g., [35]. In this case, one needs additional input to
deduce the ρ meson properties (cf. the discussion in [36]). In
[35] this input is provided by the assumption that the continuum
threshold is related to the scale of chiral symmetry breaking. In the
following we use the original sum rule approach of [27,28]. Note
that the different approaches of [27,28] and [35] are not mutually
exclusive.

In the previous line of reasoning (points 1–5) one seems to
have a connection between chiral restoration – descent of two-
and four-quark condensates – and in-medium changes, no mat-
ter whether it is a mass shift or a broadening [37,38] or a more
complicated in-medium modification [16,39]. However, at least
point 2 and, as its consequence point 4, are questionable: Whether
the four-quark condensates factorize is discussed since the inven-
tion of QCD sum rules, see, e.g., [27,28,40–46] in vacuum and
for in-medium situations [31,47–51]. With such doubts the seem-
ingly clear connection between chiral restoration and in-medium
changes gets lost.

Indeed, a closer look on the QCD sum rules for light vector
mesons reveals that most of the condensates, whose in-medium
change is translated into an in-medium modification for the re-
spective hadron, are actually chirally symmetric (see below). Physi-
cally, it is of course possible that the same microscopic mechanism
which causes the restoration of chiral symmetry is also responsi-
ble for changes of chirally symmetric condensates. For example, in
the scenario [52] about half of the (chirally symmetric) gluon con-
densate vanishes together with the two-quark condensate. These
considerations show that the connection between the mass of a
light vector meson and chiral symmetry breaking is not as direct
as often expected.

We take these considerations as a motivation to study in the
present work a clear-cut scenario where we ask and answer the
question: How large would the mass and/or the width of the ρ
meson be in a world where the chiral symmetry breaking ob-
jects/condensates are zero? In the following we will call this sce-
nario VOC (vanishing of chirally odd condensates). Note that we
leave all chirally symmetric condensates untouched, i.e. they retain
their respective vacuum values. We stress again that such a sce-
nario may not reflect all the physics which is contained in QCD.
There might be intricate interrelations between chirally symmet-
ric and symmetry breaking objects. In that sense the VOC scenario
shows for the first time the minimal impact that the restoration of
chiral symmetry has on the properties of the ρ meson.

2. Chiral transformations and QCD condensates

For vanishing quark masses, QCD with N f flavors is invariant
with respect to the global chiral SUR(N f ) × SUL(N f ) transforma-
tions. Focusing for the time being on the N f = 2 light (massless)
quark sector, the corresponding left-handed transformations read
for the left-handed quark field ψL = 1

2 (1 − γ5)ψ and the right-
handed quark field ψR = 1

2 (1 + γ5)ψ

ψL → ei �θL · �τψL, ψR → ψR , (1)

while the right-handed transformations are

ψR → ei �θR · �τ ψR , ψL → ψL, (2)

where �τ are the isospin Pauli matrices and ψ = ( u
d

)
denotes the

quark isodoublet. Eqs. (1), (2) represent isospin transformations
acting separately on the right-handed and left-handed parts of
the quark field operator ψ = ψL + ψR , i.e. the three-component
vectors �θR and �θL contain arbitrary real numbers. Gluons and

heavier quarks remain unchanged with respect to the transforma-
tions (1), (2).

A quark current which has the quantum numbers of the ρ me-
son is given by the vector–isovector current

�jμ = 1

2
ψ̄γ μ �τψ. (3)

If a chiral transformation according to (1), (2) is applied to �jμ , it
becomes mixed with the axial-vector–isovector current

�jμ5 = 1

2
ψ̄γ μγ5 �τψ (4)

which carries the quantum numbers of the a1 meson. Indeed, ex-
periments show that the vector current (3) couples strongly to
the ρ meson, while the axial-vector current (4) couples to the a1
meson [53]. Therefore, ρ and a1 are called chiral partners.

The central object of QCD sum rules [27,28,54] is the retarded
current–current correlator which reads for the ρ0 meson

Πμν(q) = i

∫
d4x eiqxΘ(x0)

〈[
jμ3 (x), jν3(0)

]〉
, (5)

where for vacuum (〈· · ·〉 means accordingly the vacuum expec-
tation value) the retarded and time-ordered propagator coincide
for positive energies, whereas for in-medium situations (e.g. nu-
clear matter, 〈· · ·〉 refers then to the Gibbs average), the retarded
correlator has to be taken (cf. [31]). The imaginary part of the
current–current correlator contains the spectral distribution, i.e.
the information which hadronic one-body and many-body states
couple to the considered current. For large space-like momenta,
Q 2 ≡ −q2 � Λ2

QCD , the correlator can be reliably calculated from
the elementary QCD quark and gluon degrees of freedom due to
asymptotic freedom. Results from QCD perturbation theory can be
systematically improved by the introduction of quark and gluon
condensates using the operator-product expansion (OPE) [55]. The
QCD sum rule method connects the mentioned two representa-
tions of the correlator by a dispersion relation which reads after a
Borel transformation

1

π

∞∫
0

ds s−1 Im Π(s)e−s/M2 = Π̃
(
M2), (6)

where the Borel mass M has emerged from the OPE momentum
scale Q (for further details we refer the interested reader to [38]).
We consider a ρ meson at rest, therefore, the tensor structure of
(5) reduces to a scalar Π = 1

3 Π
μ
μ . The Borel-transformed OPE reads

Π̃
(
M2) = c0M2 +

∞∑
i=1

ci

(i − 1)!M2(i−1)
(7)

with coefficients up to mass dimension 6

c0 = 1

8π2

(
1 + αs

π

)
, (8)

c1 = − 3

8π2

(
m2

u + m2
d

)
, (9)

c2 = 1

2

(
1 + αs

4π
C F

)(
mu〈ūu〉 + md〈d̄d〉) + 1

24

〈
αs

π
G2

〉
+ N2,

(10)

c3 = −112

81
παs

〈
OV

4

〉 − 4N4 (11)

with C F = (n2
c − 1)/(2nc) = 4/3 for nc = 3 colors. A mass dimen-

sion 2 condensate seems to be excluded in vacuum [56]. In (8)–
(11) we have introduced the strong coupling αs , the light-quark



Download	English	Version:

https://daneshyari.com/en/article/10722429

Download	Persian	Version:

https://daneshyari.com/article/10722429

Daneshyari.com

https://daneshyari.com/en/article/10722429
https://daneshyari.com/article/10722429
https://daneshyari.com/

