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The key question in the interaction of antinucleons in the nuclear medium concerns the deepness of
the antinucleon–nucleus optical potential. In this work we study this task in the framework of the non-
linear derivative (NLD) model which describes consistently bulk properties of nuclear matter and Dirac
phenomenology of nucleon–nucleus interactions. We apply the NLD model to antinucleon interactions in
nuclear matter and find a strong decrease of the vector and scalar self-energies in energy and density and
thus a strong suppression of the optical potential at zero momentum and, in particular, at FAIR energies.
This is in agreement with available empirical information and, therefore, resolves the issue concerning the
incompatibility of G-parity arguments in relativistic mean-field (RMF) models. We conclude the relevance
of our results for the future activities at FAIR.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The in-medium nucleon–nucleon interaction has been an ob-
ject of intensive theoretical and experimental research of modern
nuclear physics over the last few decades, see for a review [1].
The main finding was a softening of the nuclear equation of state
at densities reached in intermediate energy nucleus–nucleus colli-
sions, which was consistent with a variety of phenomenological [2]
and microscopic [3] models. In addition the empirical saturation of
the proton–nucleus optical potential turned out to be consistent
with heavy-ion theoretical studies [4].

While the bare antinucleon–nucleon (N N) interaction has been
actively studied, see Ref. [5] and references therein, empirical infor-
mation on the in-medium interactions of antinucleons is still very
poor. Antiproton production has been investigated theoretically in
reactions induced by protons [6] and heavy ions in the SIS-energy
region [7], where some data on antiprotons were available. Com-
plementary studies of antiproton annihilation in nuclei [8] and
antiprotonic atoms [9] provided further insight on the optical po-
tential at very low energies, however, with rather big uncertainties
in the nuclear interior due to the strong annihilation cross section
at the surface of the nucleus.

In the near future the FAIR facility intends to study the still con-
troversial and empirically less known high energy domain of the
(anti)nuclear interactions in more details than before. For instance,
the nuclear equation of state for strangeness degrees of freedom
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and also the in-medium antinucleon–nucleon interaction are some
of the key projects [10]. They are relevant for the formation of ex-
otic (anti)matter systems such as double-strange hypernuclei and
Λ-hypernuclei in antiproton-induced reactions in the P̄ANDA ex-
periment at FAIR [11].

The microscopic Brueckner–Hartree–Fock calculations of the in-
medium N N-scattering have been carried out in [12]. On the other
hand, a complementary theoretical background for phenomenolog-
ical models builds the relativistic hadrodynamics (RHD). It is based
on the relativistic mean-field (RMF) theory, which is a well estab-
lished tool for infinite and finite nuclear systems [13]. However, as
already shown many years ago [7], there are still unresolved prob-
lems in RMF models, when applying them to antiproton–nucleus
scattering and to heavy ion collisions. By just imposing G-parity
arguments, like in microscopic models [12,14], the RMF do not
describe the experimental data [7,15,16]. This incompatibility of
mean-field models with respect to G-parity symmetry has been
also shown in recent transport studies [15], where one had to
largely decrease the antinucleon–meson couplings by hand in or-
der to reproduce the empirical data.

In this work we address this issue why the conventional RMF
models do not describe antiproton–nucleus Dirac phenomenol-
ogy. To be more specific, our studies are based on the non-linear
derivative (NLD) model [17] to RMF. The NLD model describes
simultaneously the density dependence of the nuclear equation
of state and the energy dependence of the proton–nucleus opti-
cal potential. Latter feature is missing in standard RMF models.
Then applying G-parity transformation it is shown that the real
part of the proton and simultaneously the real part of the antipro-
ton optical potentials are reproduced fairly well in comparison
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with phenomenological studies. We finally make predictions for
the deepness of the real part of the antiproton optical potential
and estimate its imaginary part at low energies and energies rele-
vant for the forthcoming experiments at FAIR.

2. NLD formalism

The NLD approach [17] to nuclear matter is based essentially on
the Lagrangian density of RHD [13]. It describes the interaction of
nucleons through the exchange of auxiliary meson fields (Lorentz-
scalar, σ , and Lorentz-vector meson fields ωμ) [18]

L = LDirac + Lmes + Lint. (1)

The Lagrangian in Eq. (1) consists of the free Lagrangians for the
Dirac field Ψ and for the meson fields σ and ωμ . The isovector
meson ρ is not considered here, for simplicity.

In conventional RHD the interaction Lagrangian Lint contains
meson fields which couple to the Dirac field via the correspond-
ing Lorentz-density operators gσ Ψ Ψσ and −gωΨγ μΨωμ for the
scalar and vector parts, respectively. Such interactions describe
rather successfully the saturation properties of nuclear matter, but
they miss the energy dependence of the mean field. A possi-
ble solution to this problem has been proposed in [6] where the
momentum-dependent phenomenological form factors were intro-
duced. In [17] this idea has been generalized in a manifestly co-
variant way. In particular, the symmetrized interaction in the NLD
model is given by

Lint = gσ

2
[Ψ ←

D Ψσ + σΨ
→

D Ψ ]

− gω

2

[
Ψ

←
D γ μΨωμ + ωμΨγ μ

→
D Ψ

]
. (2)

The interaction between the Dirac and the meson fields has a sim-
ilar functional form as in standard RHD [13]. However, now new
operators D acting on the nucleon fields appear, which are the
non-linear functionals of partial derivatives

→
D:= exp

(−vβ i
→
∂ β +m

Λ

)
,

←
D:= exp

(
i

←
∂ β vβ + m

Λ

)
. (3)

In Eq. (3) vβ denotes a dimensionless auxiliary 4-vector and Λ

stands for the cut-off parameter. The latter has been adjusted to
the saturation properties of nuclear matter [17]. In the limiting
case of Λ → ∞ the standard Walecka model is retained.

The NLD Lagrangian L is a functional of not only Ψ , Ψ and
their first derivatives, but it depends on all higher order covari-
ant derivatives of Ψ and Ψ . For such a generalized functional the
Euler–Lagrange equations take the form [17]

∂L
∂φ

− ∂α1

∂L
∂(∂α1φ)

+ ∂α1∂α2

∂L
∂(∂α1∂α2φ)

+ · · ·

+ (−)n∂α1∂α2 · · · ∂αn

∂L
∂(∂α1∂α2 · · · ∂αnφ)

= 0. (4)

Contrary to the standard expressions for the Euler–Lagrange equa-
tion, now infinite series of terms (n → ∞) proportional to higher
order derivatives of the Dirac field (φ = Ψ,Ψ ) appear. They can be
evaluated by a Taylor expansion of the non-linear derivative oper-
ators (3). As shown in [17], in nuclear matter an infinite series of
terms can be resumed exactly and the following Dirac equation is
obtained[
γμ

(
i∂μ − Σμ

) − (m − Σs)
]
Ψ = 0, (5)

with Lorentz-vector and Lorentz-scalar self-energies defined as fol-
lows

Σμ = gωωμe
−vβ i

→
∂ β+m
Λ , Σs = gσ σ e

−vβ i
→
∂ β+m
Λ . (6)

The Proca and Klein–Gordon equations for the meson fields can be
also derived

∂μF μν + m2
ωων

= 1

2
gω

[
Ψ e

i
←
∂ β vβ+m

Λ γ νΨ + Ψγ νe
−vβ i

→
∂ β+m
Λ Ψ

]
, (7)

∂μ∂μσ + m2
σ σ = 1

2
gσ

[
Ψ e

i
←
∂ β vβ+m

Λ Ψ + Ψ e
−vβ i

→
∂ β+m
Λ Ψ

]
, (8)

with the field tensor F μν = ∂μων − ∂νωμ . The meson field equa-
tions (7) and (8) show a similar form as in the linear Walecka
model of RHD, except of the highly non-linear behavior of the
source terms, which generate selfconsistent couplings between the
meson-field equations.

Applying the usual RMF approximation to the idealized sys-
tem of infinite nuclear matter, the Dirac equation (5) maintains
its original form. However, we have to distinguish between nucle-
ons (N) forming the nuclear matter and antinucleons (N) which
interact with the nuclear matter. For the description of antipar-
ticles we require G-parity invariance of the Dirac equation and
then follow the standard procedure of applying a G-parity trans-
formation G = Ceiπ I2 to the negative energy states, where I2 is the
operator associated with the 2nd component of the isospin “vec-
tor” and C is the charge conjugation operator. The invariance of the
Dirac equation under charge conjugation requires that the auxiliary
vector vβ must be odd under C-parity transformation. With our
choice of vβ = (1, �0) for positive energy solutions [17] this results
in vβ = (−1, �0) for the charge conjugated Dirac field. This leads to
the following Dirac equations for nucleons
[
γμ

(
i∂μ − Σμ

) − (m − Σs)
]
ΨN = 0 (9)

and antinucleons
[
γμ

(
i∂μ + Σμ

) − (m − Σs)
]
ΨN = 0 (10)

interacting with nuclear matter, where ΨN = Ψ + and ΨN = ΨC de-
note the positive energy and the charge conjugated Dirac fields,
respectively.

The nucleon and antinucleon self-energies entering Eqs. (9)
and (10) are the same

Σv ≡ Σ0 = gωω0e− E−m
Λ ,

Σs = gσ σ e− E−m
Λ . (11)

However, note the opposite signs in the Lorentz-vector interac-
tions in Eqs. (9) and (10). Furthermore, the single particle energies
E have to be obtained from the in-medium mass-shell conditions
which are different for nucleons (N) and antinucleons (N)

EN(p) =
√

p2 + m∗2 + Σv , EN(p) =
√

p2 + m∗2 − Σv . (12)

The in-medium (or effective) Dirac mass in Eq. (12) is given by
m∗ = m −Σs . Note, that m∗ depends explicitly on particle momen-
tum. Again, in the limiting case of Λ → ∞, the exponential factor
is equal to unity and the equations are reduced to the ones from
the Walecka model. In the NLD model the cut-off parameter Λ is
of natural size, i.e., of typical hadronic mass scale in this prob-
lem. In the following, Λ = 770 MeV is chosen, as in the original
work [17].

In nuclear matter the NLD equations of motion for ω and σ
simplify to standard algebraic equations

m2
ωω0 = gωρv , m2

σ σ = gσ ρs (13)

with the corresponding density sources ρv = 〈Ψ Nγ 0e− E−m
Λ ΨN 〉

and ρs = 〈Ψ N e− E−m
Λ ΨN 〉. The vector density ρv is not related to
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