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We study the topological charge fluctuations of an SU(2) lattice gauge theory containing both N f = 2
and 4 flavors of Wilson fermion, at low temperature with non-zero chemical potential μ. The topological
susceptibility, χT , is used to characterise differing physical regimes as μ is varied between the onset of
matter at μo and color deconfinement at μd . Suppression of instantons by matter via Debye screening is
also investigated, revealing effects not captured by perturbative predictions. In particular, the breaking of
scale invariance leads to the mean instanton size ρ̄ becoming μ-dependent in the regime between onset
and deconfinement, with a scaling ρ̄ ∝ μ−2 over the range μo < μ < μd , resulting in an enhancement of
χT immediately above onset.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Lattice studies of matter at non-zero baryon density are ham-
pered by the ‘sign problem’, which arises when a quark chemical
potential term μ is included in the Euclidean QCD action. The re-
sulting complex nature of the fermion determinant precludes a
positive definite probability measure and computational techniques
based on importance sampling break down. A gauge theory which
is accessible to Monte Carlo simulations is QC2D, based on gauge
group SU(2), describing “two color matter”. In QC2D, quarks belong
in the pseudoreal 2 representation of SU(2) which can guarantee a
positive definite measure.

Studies of two color matter have been performed utilising
a number of fermion formulations. The series of works ob-
tained from simulations involving two and four flavors of Wilson
fermion [1–3] have revealed a scenario in which, as μ is increased,
baryonic matter forms at an onset μo = mπ/2 whereupon the mat-
ter then exists in a superfluid state with a progression from a
dilute gas of tightly-bound diquark pairs to degenerate quark mat-
ter, culminating in color deconfinement at around μ ≈ 1.1mπ . This
Letter supplements this picture with an investigation of topological
effects observed on the same lattice configurations.

The topological charge density qT may be defined in terms of
the Yang–Mills field tensor as

qT = 1

32π2
Fμν F̃μν (1)
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with F̃μν = 1
2 εμνρσ Fρσ . The action is minimised when the con-

dition Fμν = ± F̃μν is satisfied. The observable measured to study
topological charge fluctuations is the topological susceptibility, χT ,
defined as

χT = 〈Q 2〉
V

, (2)

where Q = ∫
d4x qT and V = ∫

d4x. Using large-Nc methods χT is
estimated by means of the Witten–Veneziano formula [4,5]

χT = f 2
π

2N f

(
m2

π + m2
η′ − 2m2

K

)
(3)

to be (180 MeV)4 in the SU(3) gauge vacuum. Simulations of hot
two color matter with two flavors of staggered quark (equivalent to
N f = 8 continuum quark flavors) have shown this quantity drops
sharply at the deconfining temperature and have suggested this
also happens at non-zero chemical potential [6,7]. When χT is
measured as a function of aμ, the susceptibility remains constant
before dropping dramatically at a critical chemical potential corre-
sponding to both deconfinement and chiral symmetry restoration.

In a semi-classical picture topological charge is localised on
four-dimensional objects called instantons, which are solutions of
the self-dual condition for a local minimum of the action [8]. An-
other observable of interest is the size of an instanton ρ . This is a
measure of the extent to which the gauge field action is localised.
For classical Yang–Mills instantons the size may be considered ar-
bitrary due to scale invariance and so ρ does not depend upon the
action, and vice versa. However, in the quantum vacuum scale in-
variance is broken, and the typical size of an instanton is estimated
to be in the region of 0.3 fm [9,10].
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In dense matter, Debye screening of color charge leads to in-
stanton suppression [11]. Perturbative calculations [12] predict
that instanton number at large chemical potential should go like

n(μ) = n(μ = 0)exp
(−N f (ρμ)2). (4)

Therefore, as the number of quark flavors N f is increased, instan-
tons should be suppressed and χT should decrease. It should also
be expected that, if the average instanton size ρ is indeed fixed,
then the extra matter present as μ is increased will screen the
topological charge and suppress χT still further.

2. Methodology

In order to explore instanton effects on a lattice we replace the
continuum topological charge density qT (1) with its lattice coun-
terpart

qL(x) = 1

32π2
εμνρσ Tr

(
Uμν(x)Uρσ (x)

)
(5)

where Uμν(x) is the product of link variables around a plaquette at
site x in the μ–ν plane [13]. The charge density is thus measured
by taking the trace of the product of two orthogonal plaquettes.
The total charge Q L is obtained via Q L = ∑

x qL(x). Within each
configuration, the peaks due to the presence of instantons (whose
structure may extend over a scale ρ � a, where a is the lattice
spacing) are mutated by short scale (O(a)) fluctuations. Such UV
fluctuations are highly undesirable as they contribute to the to-
tal charge but obscure the ‘real’ instantons, and so the measured
susceptibility can be an overestimate [14]. The lattice topological
susceptibility χL ≡ 〈Q 2

L 〉/V differs from the continuum value by
both a multiplicative factor Z and an additive one M:

χL = Z 2a4χT + M. (6)

Z and M depend on several factors including the quark mass, the
inverse coupling β and the choice of fermion operator [7]. In gen-
eral, on the lattice, Z 
= 1 and the charge Q L is not integer-valued.
The challenge is to minimise the unwanted, short distance contri-
butions while in the process recovering the continuum value in an
unambiguous fashion.

Q L for a given configuration of gauge fields is calculated by
means of Eq. (5). The effects of UV fluctuations are minimised by
cooling [15], whereby a new configuration is generated from the
old by visiting lattice sites in turn and minimising the action lo-
cally. Repeating this successively has the effect of smoothing out
fluctuations and revealing the underlying topological structure in
the gauge fields. By prudent use of cooling, the multiplicative fac-
tor Z → 1 as the unwanted fluctuations are eliminated. However,
excessive cooling eliminates not just the UV fluctuations but will
also shrink and ultimately eradicate the ‘real’ instantons. If cool-
ing shrinks an instanton until its size ρ < a then it ‘falls through’
the lattice and some of the topological information is lost. If only
larger instantons contribute to the total charge then there is a
tendency to underestimate Q T . Information can also be lost as
too much cooling has a tendency to annihilate instanton–anti-
instanton pairs. The total charge may remain the same but the
charge density is reduced. Therefore, it is vital that good control
of the cooling process is maintained.

The additive constant M may be dealt with by equating it to the
value of the topological susceptibility in the Q T = 0 sector, setting
M = χ0 ≡ χT (Q = 0). As we have no prior knowledge to suggest
that our ensemble is in the trivial sector we must modify Eq. (2).
In the non-trivial sector M can be eradicated by redefining

a4χT = 〈Q 2〉 − 〈Q 〉2

V
. (7)

Thus, by measuring the charges on a number of cooled field con-
figurations with Z ∼ 1 and calculating χT by means of (7), the
physical topological susceptibility can be extracted from the lattice
one. Henceforth, we discard the references to lattice values via our
subscripts L and merely label χ and Q with the subscript T .

The cooling method employed here uses a computer program
to read the gauge field information from each configuration and
then calculate the total action by summing over the plaquettes.
In general, this is not the minimum action. A point is then cho-
sen and a link variable Uμ(x) is selected. There are 6 plaquettes
with this link in common. The code sums the link products, in the
form of unitary matrices which form the ‘staples’ bordering the
link Uμ(x), resulting in a 2 × 2 matrix V . The matrix V is non-
unitary and must be renormalised as Ṽ = (Det V )−1/2 V . Keeping
Ṽ fixed, the action is then minimised by modifying Uμ(x). By sys-
tematically working through the old configuration and updating all
links Uμ(x) a new configuration is produced with a lower action
than the original one. This completes the first cooling sweep. By
predetermining the number of sweeps to be performed, the pro-
cess repeats automatically and the configuration is cooled to the
required extent. When cooling is complete, the code then searches
through the final configuration to find where the peaks of the
action are located and F F̃ at these points is recorded. Setting a
minimum cutoff for F F̃ allows the code to disregard the small-
est fluctuations. Imposing a second cutoff for the maximum extent
of the gauge fields inside an instanton minimises any finite vol-
ume effects associated with excessively large instantons. Once the
required topological information is extracted from the cooled con-
figuration, the program then moves onto the next configuration in
the ensemble and repeats as necessary.

To find the total topological charge on each configuration, a sec-
ond program obtains the net value of all the peaks of F F̃ from the
output of the first, providing a sequence of estimates for the fluctu-
ating variable Q T . The topological susceptibility is estimated from
this using Eq. (7).

One aspect of topological structure that is worth investigating
is the size distribution of the instantons. Instanton size may be
calculated from the peak value of the topological charge density
using

qpeak = 6

π2ρ4
. (8)

This classical approximation works reasonably well for large lat-
tice instantons, but for smaller ones whose size is of the order
of the lattice spacing, corrections of O(a2) are needed. The nec-
essary correction factors for Nc = 3 were calculated by Smith and
Teper by cooling a classical instanton and then parametrising the
resulting relationship between Q and ρ [14]. The computational
method employed in this study involved reading the peak values
of the charge from the lattice configurations and then applying it-
erative bisection to find a value for ρ which satisfied Eq. (8) to
within a predetermined error factor ε .

3. Numerical results

Information about the topological structure was extracted us-
ing two different gauge field ensembles. The first was generated
on a 123 × 24 lattice with

√
σa = 0.415(18) (σ is the string ten-

sion) using N f = 2 flavors of Wilson fermion at an inverse cou-
pling β = 1.9 [2]. The fermion action included a diquark source
term aj = 0.04 and the value of the hopping parameter κ = 0.168.
The second ensemble was generated on the same system size,
β and j using N f = 4, resulting in a significantly finer lattice with√

σa = 0.138(4) [3]. This time κ was chosen to be 0.158; both
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