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Petr Hořava a,b,∗
a Berkeley Center for Theoretical Physics and Department of Physics, University of California, Berkeley, CA 94720-7300, USA
b Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8162, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 September 2010
Accepted 10 September 2010
Available online 1 October 2010
Editor: M. Cvetič
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We present a family of nonrelativistic Yang–Mills gauge theories in D + 1 dimensions whose free-
field limit exhibits quantum critical behavior with gapless excitations and dynamical critical exponent
z = 2. The ground state wavefunction is intimately related to the partition function of relativistic Yang–
Mills in D dimensions. The gauge couplings exhibit logarithmic scaling and asymptotic freedom in the
upper critical spacetime dimension, equal to 4 + 1. The theories can be deformed in the infrared by a
relevant operator that restores Poincaré invariance as an accidental symmetry. In the large-N limit, our
nonrelativistic gauge theories can be expected to have weakly curved gravity duals.
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We present a class of nonrelativistic Yang–Mills gauge theo-
ries which exhibit anisotropic scaling between space and time.
Our motivation originates from several different areas of physics,
which have been experiencing a stimulating confluence of theoret-
ical ideas recently: condensed matter theory, in particular quantum
critical phenomena, string theory, and gauge–gravity duality.

In our study, we consider the case of D + 1 spacetime dimen-
sions, continuing the viewpoint advocated in [1] that the interface
of condensed matter and string theory is best studied from the
vantage point of arbitrary number of dimensions, even though
practical applications to condensed matter are likely to be ex-
pected only for D � 3.

The theories presented here are candidates for the descrip-
tion of new universality classes of quantum critical phenomena in
various dimensions. They combine the idea of non-Abelian gauge
symmetry, mostly popular in relativistic high-energy physics, with
the concept of scaling with nonrelativistic values of the dynamical
critical exponent, z �= 1.1 In combination, this anisotropic scaling
together with Yang–Mills symmetry opens up a new perspective
on gauge theories, changing some of the basic features of relativis-
tic Yang–Mills such as the critical dimension in which the theory
exhibits logarithmic scaling.

Since our theories can be constructed for any compact gauge
group, the choice of the SU(N), SO(N) or Sp(N) series yields a
class of theories with anisotropic scaling and a natural large-N ex-
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pansion parameter. These theories can then be expected to have
weakly-curved gravitational duals, perhaps leading to new real-
izations of the AdS/nonrelativistic CFT correspondence which has
attracted considerable attention recently [3–6]. Finally, it turns out
that our theories are intimately related to relativistic theories in
one fewer dimension, and therefore can shed some new light on
the dynamics of the relativistic models.

1. Theories of the Lifshitz type

We work on a spacetime of the form R × RD , with coordinates
t and x ≡ (xi), i = 1, . . . D , equipped with the flat spatial metric δi j
(and the metric gtt = 1 on the time dimension). The theories pro-
posed here are of the Lifshitz type, and exhibit fixed points with
anisotropic scaling characterized by dynamical critical exponent z
(see, e.g., [7]),

x → bx, t → bzt. (1.1)

We will measure dimensions of operators in the units of spatial
momenta, defining

[
xi] = −1, [t] = −z. (1.2)

The prototype of a quantum field theory with nontrivial dynami-
cal exponent z is the theory of a single Lifshitz scalar φ(x, t). In
its simplest incarnation, this theory is described by the following
action,

S = 1

2

∫
dt dD x

{
(φ̇)2 − 1

4κ2
(�φ)2

}
, (1.3)

0370-2693/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.physletb.2010.09.055

http://dx.doi.org/10.1016/j.physletb.2010.09.055
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:horava@berkeley.edu
http://dx.doi.org/10.1016/j.physletb.2010.09.055
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where � ≡ ∂i∂i is the spatial Laplacian. Throughout most of the
Letter we adhere to the nonrelativistic notation, and denote the
time derivative by “˙”.

The Lifshitz scalar is a free-field fixed point with z = 2. The
engineering dimension of φ is [φ] = D/2 − 1, i.e., the same as the
dimension of the relativistic scalar in D spacetime dimensions, im-
plying an interesting shift in the critical dimensions of the z = 2
system compared to its relativistic cousin.

Note that the potential term in the Lifshitz action (1.3) is of the
form(

δW [φ]
δφ

)2

, (1.4)

where W is the Euclidean action of a massless relativistic scalar in
D dimensions,

W [φ] = 1

2κ

∫
dD x (∂iφ∂iφ). (1.5)

When Wick rotated to imaginary time τ = it , the action can be
written as a perfect square,

S = i

2

∫
dτ dD x

{(
∂τ φ + 1

2κ
�φ

)2}
, (1.6)

because the cross-term in (1.6) is a total derivative, φ̇�φ/κ = −Ẇ ,
and can be dropped.

The coupling κ ∈ [0,∞) parametrizes a line of fixed points. If
we wish, we can absorb κ into the rescaling of the time coordinate
and a rescaling of φ.

In the original condensed-matter applications [8–10], the aniso-
tropy is between different spatial dimensions, and the Lifshitz
scalar is designed to describe the tricritical point at the juncture
of the phases with a zero, homogeneous and spatially modulated
condensate.

2. Yang–Mills theory and quantum criticality

Our nonrelativistic gauge theory in D + 1 dimensions will be
similarly associated with relativistic Yang–Mills in D dimensions.

Our gauge field is a one-form on spacetime, with spatial com-
ponents Ai = Aa

i (x j, t)Ta and a time component A0 = Aa
0(xi, t)Ta .

The Lie algebra generators Ta of the gauge group G (which we take
to be compact and simple or a U (1)) satisfy commutation relations
[Ta, Tb] = i fab

c Tc . We normalize the trace on the Lie algebra of G
by Tr(Ta Tb) = 1

2 δab .
Our theory will be invariant under gauge symmetries

δε Ai = (
∂iε

a + fbc
a Ab

i ε
c)Ta ≡ Diε,

δε A0 = ε̇ − i[A0, ε]. (2.1)

Gauge-invariant Lagrangians will be constructed from the field
strengths

Ei = (
Ȧa

i − ∂i Aa
0 + fbc

a Ab
i Ac

0

)
Ta = Ȧi − ∂i A0 − i[Ai, A0],

Fij = (
∂i Aa

j − ∂i Aa
i + fbc

a Ab
i Ac

j

)
Ta

= ∂i A j − ∂i Ai − i[Ai, A j]. (2.2)

We will now construct a theory which has z = 2 in the free field
limit. The engineering dimensions of the gauge field components
at the corresponding Gaussian fixed point will be

[Ai] = 1, [A0] = 2. (2.3)

The Lagrangian should contain a kinetic term which is quadratic
in first time derivatives, and gauge invariant. The unique candidate

for this kinetic term is Tr(Ei Ei), of dimension [Tr(Ei Ei)] = 6. One
can then follow the strategy of effective field theory, and add all
possible terms with dimensions � 6 to the Lagrangian. This would
allow terms such as Tr(Fij Fk	 F	i), Tr(Di F jk Di F jk), Tr(Di Fik D j F jk)

(all of dimension six), a term Tr(Fij F i j) of dimension four, etc.
One could indeed define the theory in this fashion, study the
renormalization-group (RG) behavior in the space of all the cou-
plings, and look for possible fixed points. This interesting problem
is beyond the scope of the present Letter. Instead, we pursue a
different strategy, and limit the number of independent couplings
in a way compatible with renormalization. The trick that we will
use is familiar from a variety of areas of physics, such as dynam-
ical critical systems [11,12], stochastic quantization [13,14], and
nonequilibrium statistical mechanics.

Inspired by the structure of the Lifshitz scalar theory, we take
our action to be

S = 1

2

∫
dt dD x

{
1

e2
Tr(Ei Ei) − 1

g2
Tr

(
(Di Fik)(D j F jk)

)}
. (2.4)

This is a Lagrangian with z = 2 and no Galilean invariance. As a
result, there is no symmetry relating the kinetic term and the po-
tential term, and therefore no a priori relation between the renor-
malization of the two couplings e and g . The potential term is
again the square of the equation of motion that follow from an ac-
tion: the relativistic Yang–Mills in D Euclidean dimensions. When
a theory in D + 1 dimensions is so constructed from the action of
a theory in D dimensions, we will say that it satisfies the detailed
balance condition, borrowing the terminology common in nonequi-
librium dynamics.

3. At the free-field fixed point with z = 2

The free-field fixed point will be obtained from (2.4) by taking
e and g simultaneously to zero. Keeping both the kinetic and the
potential term finite in this limit requires rescaling the gauge field,
Ãa

i ≡ Aa
i /

√
eg , and keeping Ãa

i finite as we take e and g to zero.
This gives

S = 1

2

∫
dt dD x

{
g

e
Tr(Ẽ i Ẽ i) − e

g
Tr

(
(∂i F̃ ik)(∂ j F̃ jk)

)}
, (3.1)

where Ẽ i and F̃ i j are the linearized field strengths of Ãi .
We see that there is actually a line of free fixed points,

parametrized by the dimensionless ratio

λ = g

e
. (3.2)

As in the Lifshitz scalar theory, if we wish we can absorb λ into a
rescaling of time, tnew = t/λ.

The special properties of the Lifshitz scalar make it possible to
determine the exact ground-state wavefunction [9],

Ψ
[
φ(x)

] = exp

{
− 1

4κ

∫
dD x(∂iφ∂iφ)

}
. (3.3)

This Ψ is equal to exp(−W [φ]/2), where W [φ] is the action (1.5)
of the relativistic scalar in D dimensions. The norm

∫
Dφ(x)Ψ ∗Ψ

equals the partition function of this relativistic theory.
Similarly, we can relate the ground-state wavefunction of our

z = 2 gauge theory to the partition function of relativistic Yang–
Mills. The momenta and the Hamiltonian are

P̃ a
i = λ

2
Ẽa

i ,

H = 2

λ

∫
dt dD x Tr

{
P̃ i P̃ i + 1

4
(∂i F̃ ik)(∂ j F̃ jk)

}
. (3.4)
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