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We discuss the existence of a non-abelian gauge structure associated with flavor mixing. In the specific
case of two flavor mixing of Dirac neutrino fields, we show that this reformulation allows to define flavor
neutrino states which preserve the Poincaré structure. Phenomenological consequences of our analysis are
explored.
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1. Introduction

The study of flavor mixing and oscillations is of utmost im-
portance in contemporary theoretical and experimental physics,
especially in view of the recent experimental discovery of neutrino
oscillations [1]. At a theoretical level, one important issue is the
one of a correct definition of the flavor states, i.e., the ones de-
scribing oscillating neutrinos. In the standard quantum mechanical
treatment, the well-known Pontecorvo states [2] are used and os-
cillation formulas are derived, which can describe efficiently the
main aspects of such a phenomenon. However, it is clear that
Pontecorvo states are only approximate since they are not eigen-
states of the flavor neutrino charges. Thus Pontecorvo states lead
to violation of the conservation of leptonic charge in the neutrino
production vertices [3,4].

The solution to the above problem has been found in the con-
text of Quantum Field Theory (QFT). Indeed, by considering mix-
ing at level of fields, rather than postulating it as a property of
states, unexpected features emerged [5]. It has been found that
field mixing is associated with inequivalent representation of the
canonical anticommutation relations, i.e., the vacuum for the mass
eigenstates of neutrinos has been found to be unitarily inequiva-
lent to the vacuum for the flavor eigenstates of neutrinos – the
flavor vacuum. The non-perturbative vacuum structure associated
with field mixing has been found to be a very general feature, in-
dependently of the nature of the fields [6–10]. It has also been
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shown that it leads to modifications of the flavor oscillation for-
mulae [6,7,11,12].

In QFT flavor states can be straightforwardly defined as eigen-
states of the flavor charges which are derived in a canonical way
from the symmetry properties of the neutrino Lagrangian [13].
It has been shown that states defined in this way restore flavor
charge conservation in weak interaction vertices, at tree level [14].
Moreover, such states turn out to be eigenstates of the momentum
operator.

Despite the above mentioned results, the QFT treatment of fla-
vor states still presents some open problems. One such issue is
Lorentz invariance. Indeed, the flavor vacuum is not Lorentz in-
variant being explicitly time-dependent. As a consequence, flavor
states cannot be interpreted in terms of irreducible representations
of the Poincaré group. A possible way to recover Poincaré invari-
ance for mixed fields has been explored in Refs. [15] where non-
standard dispersion relations for the mixed particles have been re-
lated to non-linear realizations of the Poincaré group [16]. Another
interesting issue concerns the invariance of the flavor oscillation
formulas under Lorentz boosts [17].

The relation of neutrino masses and mixing with a possible vi-
olation of the Poincaré and CPT symmetries has been the subject
of many efforts in the last decade [18]. A related line of research
concerns the use of neutrino mixing and oscillations as a sensi-
tive probe for quantum gravity effects, as quantum gravity induced
decoherence is expected to affect neutrino oscillations [19]. Such
effects have also been connected [20] to the non-trivial structure
of the flavor vacuum introduced in [5].

In this Letter we propose a non-perturbative approach to the
mixing of particles which overcomes the problems mentioned
above. The basic idea is to view the mixing phenomenon as the
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result of the interaction of the neutrino fields with an external
field, which as we shall see appears to be a non-abelian gauge
field. This point of view allows to treat formally the mixed fields as
free fields, avoiding in this way the problems with their interpre-
tation in terms of the Poincaré group. The violation of relativistic
invariance is now seen as a consequence of the presence of a
fixed external field, which defines a preferred direction in space-
time.

Our approach enables us to define flavor neutrino states which
are simultaneous eigenstates of the flavor charges, of the momen-
tum operators and of a new Hamiltonian operator for the mixed
fields whose definition naturally emerges from our approach. This
operator can be interpreted as the energy which can be extracted
from flavor neutrinos through scattering. We discuss a possible test
for our theoretical scheme, by looking at mixed neutrinos in the
β decay, where the endpoint of the electron energy spectrum turns
out to be different in our approach with respect to the standard
prediction.

In the present Letter, we consider only the mixing of two Dirac
fermion fields. Similar results hold also for the case of mixing of
boson fields, and for the case of three flavors. An analysis of these
instances will be presented elsewhere.

2. Two-flavor neutrino mixing

We begin with the Lagrangian density describing two mixed
neutrino fields:

L = ν̄e(i/∂ − me)νe + ν̄μ(i/∂ − mμ)νμ − meμ(ν̄eνμ + ν̄μνe). (1)

The standard treatment of the problem is based on the observa-
tion that this Lagrangian, being quadratic, can be diagonalized by
a canonical transformation of the field operators (called the mixing
transformation):

νe = ν1 cos θ + ν2 sin θ, (2)

νμ = −ν1 sin θ + ν2 cos θ, (3)

so that one simply gets the sum of two free Dirac Lagrangians:

L = ν̄1(i/∂ − m1)ν1 + ν̄2(i/∂ − m2)ν2. (4)

In the above equations, θ is the mixing angle and me = m1 cos2 θ +
m2 sin2 θ , mμ = m1 sin2 θ + m2 cos2 θ , meμ = (m2 − m1) sin θ cos θ .

From the above Lagrangian, one can derive the canonical
energy–momentum tensor:

Tρσ = ν̄eiγρ∂σ νe − ηρσ ν̄e
(
iγ λ∂λ − me

)
νe + ν̄μiγρ∂σ νμ

− ηρσ ν̄μ

(
iγ λ∂λ − mμ

)
νμ + ηρσ meμ(ν̄eνμ + ν̄μνe)

= ν̄1iγρ∂σ ν1 − ηρσ ν̄1
(
iγ λ∂λ − m1

)
ν1 + ν̄2iγρ∂σ ν2

− ηρσ ν̄2
(
iγ λ∂λ − m2

)
ν2, (5)

where ηρσ = diag(+1,−1,−1,−1) is the Minkowskian metric
tensor. From this tensor it follows the total Hamiltonian:

H =
∫

d3x T 00

=
∫

d3xν
†
1(−iα · ∇ + βm1)ν1

+
∫

d3xν
†
2(−iα · ∇ + βm2)ν2, (6)

which is just the sum of two free field Hamiltonians: H = H1 + H2.

Analogously, a momentum operator is defined as:

P i =
∫

d3x T 0i = i

∫
d3xν

†
1∂

iν1 + i

∫
d3xν

†
2∂

iν2,

i = 1,2,3, (7)

which again is the sum of two free field contributions.
To the free fields ν j there are associated two conserved

(Noether) charges:

Q j =
∫

d3xν
†
j (x)ν j(x), j = 1,2, (8)

with the total charge Q = Q 1 + Q 2. The analysis of symmetries of
the Lagrangian in the flavor basis (1), leads to the identification of
the (non-conserved) flavor charges [13]:

Q σ (x0) =
∫

d3xν
†
σ (x)νσ (x), σ = e,μ, (9)

with Q e(x0) + Q μ(x0) = Q . Flavor charges describe the phe-
nomenon of neutrino oscillations, see Appendix A.

It is interesting to consider the relation between the two sets
of charges:

Q e(x0) = cos2 θ Q 1 + sin2 θ Q 2

+ sin θ cos θ

∫
d3x

[
ν

†
1(x)ν2(x) + ν

†
2(x)ν1(x)

]
, (10)

Q μ(x0) = sin2 θ Q 1 + cos2 θ Q 2

− sin θ cos θ

∫
d3x

[
ν

†
1(x)ν2(x) + ν

†
2(x)ν1(x)

]
. (11)

The appearance of terms that cannot be written in terms of Q j is
related to a non-trivial structure of the flavor Hilbert space [5], see
Appendix A.

3. Flavor mixing as a non-abelian gauge theory

We now show that the Lagrangian (1) can be formally written
as a non-abelian gauge theory. In the following we shall use the
conventions of Ref. [21].

The starting point is the observation that the mixing interaction
can be consistently viewed as the interaction of the flavor neutrino
fields with a constant external gauge field. The most direct way of
seeing this goes through the Euler–Lagrange equations correspond-
ing to the Lagrangian (1), namely:

i∂0νe = (−iα · ∇ + βme)νe + βmeμνμ, (12)

i∂0νμ = (−iα · ∇ + βmμ)νμ + βmeμνe, (13)

where αi , i = 1,2,3, and β are the usual Dirac matrices in a given
representation. Here we choose the following representation:

αi =
(

0 σi
σi 0

)
, β =

(
1 0
0 −1

)
, (14)

where σi are the Pauli matrices and 1 is the 2 × 2 identity matrix.
The Euler–Lagrange equations can be compactly written as follows:

iD0ν f = (−iα · ∇ + βMd)ν f , (15)

where ν f = (νe, νμ)T is the flavor doublet and Md = diag(me,mμ)

is a diagonal mass matrix. We have defined the (non-abelian) co-
variant derivative:

D0 := ∂0 + imeμβσ1, (16)

where meμ = 1
2 tan 2θδm, and δm := mμ − me .
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