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The theory of causal dynamical triangulations (CDT) attempts to define a nonperturbative theory of
quantum gravity as a sum over spacetime geometries. One of the ingredients of the CDT framework is a
global time foliation, which also plays a central role in the quantum gravity theory recently formulated by
Hořava. We show that the phase diagram of CDT bears a striking resemblance with the generic Lifshitz
phase diagram appealed to by Hořava. We argue that CDT might provide a unifying nonperturbative
framework for anisotropic as well as isotropic theories of quantum gravity.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

A major unsolved problem in theoretical physics is to reconcile
the classical theory of general relativity with quantum mechanics.
Recently there has been a resurgence in interest in using mundane
quantum field theory to address this question. Progress over the
last ten years in the use of renormalization group (RG) techniques
[1] suggests that the so-called asymptotic safety scenario, origi-
nally put forward by S. Weinberg [2], may be realized, namely, the
existence of a nontrivial ultraviolet fixed point, where one can de-
fine a theory of quantum gravity.

In tandem with this approach, the method of Causal Dynami-
cal Triangulation (CDT) has been developed, likewise with the aim
of defining and constructing a nonperturbative quantum gravity
theory [3–7] (for recent reviews, see [8]). CDT provides a lattice
framework in which a variety of nonperturbative field-theoretical
aspects of quantum gravity can be studied, including in principle
predictions from other candidate theories. Despite the fact that the
CDT and the RG approaches use rather different sets of tools, they
might be two sides of the same coin. Locating a suitable UV fixed
point in causal dynamical triangulations would provide strong ev-
idence that this is indeed the case and that “asymptotic safety” is
on the right track.
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More recently, P. Hořava has suggested yet another field-
theoretical approach to quantum gravity in the continuum [9],
since dubbed Hořava–Lifshitz gravity, where the four-dimensional
diffeomorphism symmetry of general relativity is explicitly broken.
Assuming a global time-foliation, time and space are treated dif-
ferently, in the sense that only suitable second-order derivatives in
time appear to render the quantum theory unitary, while higher-
order spatial derivatives ensure renormalizability.

A common key ingredient in both CDT and Hořava–Lifshitz
gravity is a global time foliation, with the difference that in CDT
this is not directly associated with a violation of diffeomorphism
symmetry, since the dynamics is defined directly on the quotient
space of metrics modulo diffeomorphisms. This raises the question
whether new insights can be gained by analyzing and interpret-
ing CDT quantum gravity in a generalized, anisotropic framework
along the lines of Hořava–Lifshitz gravity. The reference frame un-
til now has been a covariant one, assuming that any UV fixed point
found in the CDT formulation could be identified with that found
in the covariant renormalization group approach, appealing to the
general sparseness of fixed points.1 At the same time, we have pre-
sented general arguments in favour of a reflection-positive transfer
matrix in the (Euclideanized version of) CDT [10,11]. Thus the con-
ditions for a unitary quantum field theory at the UV fixed point are
also met. The philosophy behind formulating gravity at a Lifshitz
point was that unitarity in a theory of quantum gravity should be

1 Of course, one should also show that a lattice fixed point reproduces the critical
exponents of the RG treatment.
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the prime requirement, rather than treating space and time on the
(almost) equal footing required by special relativity. We conclude
that the CDT approach not only shares the time-foliated structure
of spacetime, but also the enforcement of unitarity by construction
with Hořava–Lifshitz gravity.

This led us to asking whether CDT may be able to capture as-
pects of the latter, despite the fact that no higher-order spatial
derivative terms are put in by hand in the CDT action. Some sup-
port for this idea comes from the fact that one UV result which can
be compared explicitly, namely, the nontrivial value of the spec-
tral dimension of quantum spacetime, appears to coincide in both
approaches [12,13]. Interestingly, also the renormalization group
approach was able to reproduce the same finding, after the spectral
dimension had first been measured in simulations of CDT quantum
gravity, a result taken at the time as possible corroboration of the
equivalence between the CDT and RG approaches [14].2

In view of the considerations outlined above, we have returned
to a closer analysis of the basic CDT phase diagram. In what fol-
lows, we will report on some striking similarities between the
phase diagram of causal dynamically triangulated gravity and the
Lifshitz phase diagram promoted in Hořava–Lifshitz gravity. They
become apparent when one identifies “average geometry”, presum-
ably related to the conformal mode of the geometry in some way,
with the order parameter φ of an effective Lifshitz theory. We find
that the phase structure allows potentially for both an anisotropic
and an isotropic UV fixed point, opening the exciting prospect that
CDT can serve as a nonperturbative lattice foundation for both the
renormalization group approach and Hořava–Lifshitz gravity, in the
same way as theories on fixed lattices provide us with nonpertur-
bative definitions of quantum field theories in the formulation of
K. Wilson.

2. Causal dynamical triangulation

We will merely sketch the setup used in CDT, and refer to [11,
4,7] for more complete descriptions and to [16] for the rationale
behind the formulation. We attempt to define the path integral
of quantum gravity by summing over a class of piecewise linear
spacetime geometries, much in the same way as one can define
the path integral in ordinary quantum mechanics by dividing the
time into intervals of length a, considering paths which are linear
between tn = na and tn+1 = (n + 1)a, and then taking the limit of
vanishing “lattice spacing”, a → 0.

Let us introduce a time slicing labeled by discrete lattice
times tn . The spatial hypersurface labeled by tn has the topol-
ogy of S3 and is a piecewise flat triangulation, obtained by gluing
together identical, equilateral tetrahedra with link lengt as , to
be identified with the short-distance lattice cut-off. We now con-
nect the three-dimensional triangulation of S3 at tn with that at
time tn+1 by means of four types of four-simplices: four-simplices
of type (4,1), which share four vertices (in fact, an entire tetra-
hedron) with the spatial hypersurface at tn and one vertex with
the hypersurface at tn+1; four-simplices of type (1,4), where the
roles of tn and tn+1 are interchanged; four-simplices of type (3,2),
which share three vertices (in fact, an entire triangle) with the hy-
persurface at tn , and two vertices with the hypersurface at tn+1
(belonging to the same spatial link); lastly, four-simplices of type
(2,3), defined analogously but with tn and tn+1 interchanged.

These four-simplices have a number of links (and corresponding
triangles and tetrahedra) connecting vertices in hypersurfaces tn

2 Inspired by the seemingly universal value of the UV spectral dimension, more
general arguments about the underlying UV nature of spacetime have been put for-
ward [15].

and tn+1. We take all of these links to be time-like with (squared)
length a2

t = αa2
s . The four-simplices are glued together such that

the “slab” between hypersurfaces labeled by tn and tn+1 has the
topology S3 × [0,1]. We say that the hypersurfaces are separated
by a proper distance

√
αat , but this is not strictly speaking true

if one takes the piecewise flat geometries (despite their curvature
singularities) seriously as classical spacetimes. However, what is
true is that all links connecting neighbouring hypersurfaces have
proper length

√
αat .

In the path integral we sum over all geometrically distinct
piecewise linear geometries of this type, and with a fixed num-
ber of time steps. As an action we use the Einstein–Hilbert action,
which has a natural realization on piecewise linear geometries,
first introduced by Regge. The geometries allow a rotation to Eu-
clidean geometries simply by rotating α → −α in the lower-half
complex plane. The action changes accordingly and becomes the
Euclidean Einstein–Hilbert Regge action of the thus “Wick-rotated”
piecewise flat Euclidean spacetime. Its functional form becomes
extremely simple because we use only two different kinds of build-
ing blocks, which contribute in discrete units to the four-volume
and the scalar curvature. In this way the Euclidean action becomes
a function of “counting building blocks”, namely,

S E = 1

G

∫ √
g(−R + 2Λ)

→ −(κ0 + 6�)N0 + κ4
(
N(4,1)

4 + N(3,2)
4

)
+ �

(
2N(4,1)

4 + N(3,2)
4

)
, (1)

where N0 is the number of vertices, N(4,1)
4 the number of four-

simplices of type (4,1) or (1,4), and N(3,2)
4 the number of four-

simplices of type (3,2) or (2,3) in the given triangulated space-
time history. For later use we denote the total number N(4,1)

4 +
N(3,2)

4 of four-simplices by N4. Furthermore, the parameter κ0
in (1) is proportional to the inverse bare gravitational coupling
constant, while κ4 is related to the bare cosmological coupling
constant. Finally, � is an asymmetry parameter which in a con-
venient way encodes the dependence of the action on the relative
time–space scaling α introduced above, and is handy when study-
ing the relation to Hořava–Lifshitz gravity. Vanishing � = 0 implies
α = 1, and increasing � away from zero corresponds to decreas-
ing α, i.e. the time-like links shrink in length when � is increased.

The rotation to Euclidean space is necessary in order to use
Monte Carlo simulations as a tool to explore the theory nonpertur-
batively. For simulation-technical reasons it is preferable to keep
the total number N4 of four-simplices fixed during a Monte Carlo
simulation, which implies that κ4 effectively does not appear as a
coupling constant. Instead we can perform simulations for differ-
ent four-volumes if needed. To summarize, we are dealing with a
statistical system of fluctuating four-geometry, whose phase dia-
gram as function of the two bare coupling constants κ0 and � we
are going to explore next.

3. The CDT phase diagram

The CDT phase diagram was described qualitatively as part of
the first comprehensive study of four-dimensional CDT quantum
gravity [4]. For the first time, we are presenting here the real phase
diagram (Fig. 1), based on computer simulations with N4 = 80 000.
Because there are residual finite-size effects for universes of this
size, one can still expect minor changes in the location of the tran-
sition lines as N4 → ∞. The dotted lines in Fig. 1 represent mere
extrapolations, and lie in a region of phase space which is difficult
to access due to inefficiencies of our computer algorithms.
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