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The recently discovered so-called BSW effect consists in the unbound growth of the energy Ec.m. in the
center of mass frame of two colliding particles near the black hole horizon. We consider a new type
of the corresponding scenario when one of two particles (“critical”) remains at rest near the horizon of
the charged near-extremal black hole due to balance between the attractive and repulsion forces. The
other one hits it with a speed close to that of light. This scenario shows in a most pronounced way
the kinematic nature of the BSW effect. In the extremal limit, one would gain formally infinite Ec.m. but
this does not happen since it would have require the critical massive particle to remain at rest on the
null horizon surface that is impossible. We also discuss the BSW effect in the metric of the extremal
Reissner–Nordström black hole when the critical particle remains at rest near the horizon.

© 2012 Published by Elsevier B.V.

1. Introduction

The recent finding of the effect of the unbound growth of the
energy Ec.m. in the center of mass frame due to collisions of par-
ticles near the black hole horizon [1] (BSW effect) attracts now
much attention. Both manifestations of this effect in different sit-
uation are being studied in detail and also the very nature of the
effect itself is under investigation. It was observed in [2] that the
underlying physical reason of the BSW effect can be explained
in kinematic terms. Namely, it turns out that, roughly speaking,
a rapid particle collides with a slow one near the horizon, this
leads to the growth of the relative velocity and, as a result, to
the unbound growth of the corresponding Lorentz gamma fac-
tor, so the energy Ec.m. becomes unbound near the horizon. This
general circumstance was also confirmed in thorough analysis of
the BSW effect in the Kerr metric [3]. Nonetheless, some doubts
remain concerning the possibility to give an alternative explana-
tion. If something is being accelerated to unbound energies, one is
tempted to ask, what source does this, and what is the “physical”
underlying reason of such an effect.

The aim of the present work is to reveal the kinematic nature
of the BSW effect in the most pronounced way. To this end, we
consider the situation when one of two colliding particles is mo-
tionless while the other one moves (as usual) with a finite energy
in the frame of a distant observer. In a sense, this is the ulti-
mate and clear manifestation of the kinematic nature of the effect
under discussion that does not require to search for further hidden
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dynamic factors. The model which we discuss shows the key is-
sue as clear as possible: the role of gravitation in producing the
BSW effect of the unbound growth of Ec.m. (“acceleration of parti-
cles”) consists not in acceleration but in deceleration of one of two
particles (in the sense that its velocity is reduced to zero)!

To achieve our goal, we consider the spherically symmetric
metric of a charged black hole that admits the equilibrium of
a particle that remains motionless. In other words, we want to bal-
ance the gravitation force by electrical repulsion. Apart from this, it
is important that such a point be located in the vicinity of the hori-
zon. For definiteness, we consider the innermost stable equilibrium
point which is the counterpart of the innermost stable circular or-
bit for the Kerr metric [4]. Such orbits were discussed recently due
to their potential astrophysical significance [5,6]. (See their gener-
alization to “dirty” rotating black holes [7].) There exists also their
analog in the magnetic field where the BSW effect was studied re-
cently in [8].

The simplest choice would seem to be the Reissner–Nordström
(RN) black hole but for this metric the “orbit” with the required
properties exists for indifferent equilibrium only (see Section 5
below). Therefore, for the analog of inner stable orbits we take
the charged black hole with nonzero cosmological constant Λ. It
turns out that it is required that Λ < 0, so we deal mainly with
the Reissner–Nordström–anti-de Sitter one (RN–AdS) which is suf-
ficient for our purposes. It is also worth noting that interest to
black holes with the cosmological constant Λ < 0 revived in recent
years due to AdS/CFT correspondence [9]. In addition, we consider
also another type of “orbit” – a particle in the state of indiffer-
ent equilibrium in the metric of the extremal Reissner–Nordström
black hole.
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2. Equations of motion

Consider the space–time describing a charged black hole with
the cosmological constant. Its metric can be written as

ds2 = − f dt2 + dr2

f
+ r2 dΩ2, (1)

f = 1 − 2m

r
+ Q 2

r2
− Λr2

3
. (2)

Throughout the Letter we assume that the fundamental constants
G = c = h̄ = 1. The horizon lies at r = r+ where f (r+) = 0. The
electric potential

ϕ = Q

r
+ C (3)

where the C is the constant of integration. It is assumed that
we work in the gauge where the only nonvanishing component
A0 = −ϕ . For the asymptotically flat case, say, for the Reissner–
Nordström or Kerr–Newman metric, it is usually chosen C = 0 to
have ϕ = 0 at infinity (see, e.g., Eq. (3.63) of [10]). In the absence
of asymptotic flatness, its choice becomes conditional. It is worth
stressing that physically relevant quantities contain not the poten-
tial itself but the difference with respect to some reference point
(infinity or horizon). For example, in black hole thermodynamics,
the potential enters the action in the form ϕ(r)−ϕ(r+)√

f
that is non-

singular at the horizon (see Eq. (4.15) of [11]). In equations of
motion (see below) only the combination E − qϕ appears where
q is the particle’s charge. If we change the potential according to
ϕ → ϕ + C , the corresponding shift in the energy E → E + qC . For
convenience, we choose C = 0 in (3).

We restrict ourselves by radial motion since this case is the
most interesting in the context under discussion. As is known, un-
der the presence of the electromagnetic field, dynamics of the sys-
tem is described by the generalized momentum Pμ related to the
kinematic one pμ = muμ by the relation pμ = Pμ − q Aμ where
uμ = dxμ

dτ is the four-velocity of a test massive particle, τ is the
proper time, Aμ is the vector potential. Due to staticity, the energy
E = −P0 of a particle moving in this metric is conserved, P0 is the
time component of the generalized momentum Pμ . Then, using
also the relation u0 = g00u0, we obtain (dot denotes the derivative
with respect to the proper time τ )

ṫ = u0 = X

mf
, (4)

X = E − qϕ. (5)

We assume that ṫ > 0, so that E − qϕ > 0.

m2ṙ2 = −V eff = X2 − m2 f . (6)

Now, we are interested in equilibrium solutions r = r0 = const,

V eff (r0) = 0. (7)

Additionally, we require that they possess the following proper-
ties: (i) r0 is a perpetual turning point, (ii) it lies near the horizon,
r+ → r0. Condition (i) means that, in addition to (7), equation

V ′
eff (r0) = 0 (8)

should hold. Eqs. (7), (8) ensure that not only ṙ but also all higher
derivatives vanish.

It follows from (6), (7) that for a particle with ṙ = 0,

X(r0) = m
√

f (r0). (9)

It is instructive to elucidate for which types of black holes equa-
tions (7) and (8) are self-consistent near the horizon, so that

equilibrium points exist there in agreement with requirement (ii).
Physical motivation for considering this requirement comes from
our main goal – investigation of the BSW effect since this effect
occurs just in the vicinity of the horizon.

If we take the derivative of the effective potential V eff in Eq. (6)
and take into account also the relation (7), we obtain

−1

2
V ′

eff (r0) = m
√

f (r0)
qQ

r2
0

− m2

2
f ′(r0). (10)

Let us consider the limit r0 → r+ , so f (r0) → 0. Then, it follows
from (10) that V ′

eff (r0) → −m2κ where we used the fact for the

metric (1) κ = 1
2 f ′(r+). Thus if κ �= 0, Eq. (8) cannot be satisfied in

the horizon limit. Therefore, for nonextremal black holes the equi-
librium points cannot exist near the horizon (although they can
exist elsewhere at a finite distance from the horizon). This gen-
eralizes previous observations [3,7] made for rotating black holes.
However, if κ → 0, the equilibrium points close to the horizon do
exist as will be shown below.

3. Properties of equilibrium point

For the Kerr metric [4] and, in general, for axially-symmetric
rotating black holes [7], there are so-called innermost stable orbits
(ISCO) which correspond to the threshold of stability. We consider
now their analogs in our case, so we must add to (7) and (10), also
equation

V ′′
eff (r0) = 0. (11)

For brevity, we will call this an innermost stable equilibrium point
(ISEP).

We are interested in the near-horizon region where we can ex-
pand f in the Taylor series with respect to x = r0 − r+:

f = 2κx + Dx2 + Cx3 · · · . (12)

From now on, we assume that κ is a small parameter, so a black
hole is a near-extremal. Then, this leads to an interplay between
two small quantities κ and x. We assume the condition

κ � Dx (13)

which one can check a posteriori that for the solutions obtained.
Then, the procedure for the description of the equilibrium

points is mathematically similar to that for the description of cir-
cular orbits in the background of rotating black holes [7]. In both
cases, we are interested in solutions for which ṙ = 0 and which
are on the threshold of stability. Therefore, I omit technical details
(which are connected with simple but rather cumbersome calcula-
tions) and give the main results of Eqs. (7), (8), (11).

It turns out that

x3 ≈ H3κ2, (14)

where

H3 = 3r3+
4(−Λ)(1 − 2Λr2+)

(15)

and the constants in (12)

D = 1

r2+
− 2Λ, (16)

C = − 2

r3+
+ 8

3

Λ

r+
. (17)

As in the extremal limit κ → 0 we must have f > 0 in the
vicinity of the horizon from the outside, the coefficient D > 0.
Then, in combination with H > 0, this entails that Λ < 0.
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