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Abstract

The application of the nonperturbative renormalisation group approach to a system with two fermion species is studied. Assuming a simple
ansatz for the effective action with effective bosons, describing pairing effects we derive a set of approximate flow equations for the effective
coupling including boson and fermionic fluctuations. The case of two fermions with different masses but coinciding Fermi surfaces is considered.
The phase transition to a phase with broken symmetry is found at a critical value of the running scale. The large mass difference is found to
disfavour the formation of pairs. The mean-field results are recovered if the effects of boson loops are omitted. While the boson fluctuation
effects were found to be negligible for large values of pF a they become increasingly important with decreasing pF a thus making the mean field
description less accurate.
© 2006 Published by Elsevier B.V.
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The properties of asymmetric many fermion systems have
recently attracted much attention (see, for example Ref. [1]
and references therein) driven by the substantial advance in
experimental studies of trapped fermionic atoms. This asym-
metry can be provided by unequal masses, different densities
and/or chemical potentials. Understanding the pairing mech-
anism in such settings would be of immense value for dif-
ferent many fermion systems from atomic physics to strongly
interacting quark matter. The important theoretical issue to be
resolved here is the nature of the ground state. Several compet-
ing states have been proposed so far. These include: LOFF [2]
phase, breached-pair (BP) superfluidity [3] (or Sarma phase)
and mixed phase [4]. Establishing the true ground state is still
an open question. It was shown, for example, that LOFF and
mixed phases are more stable then the Sarma phase in the sys-
tems of fermions with the mismatched Fermi surfaces and with
both equal and different masses [1,4,5]. All these studies, how-
ever, have been performed within the mean field approximation

E-mail address: krippa@theory.phy.umist.ac.uk (B. Krippa).

(MFA). In spite of the fact that in many cases MFA is quite
reliable it is important to understand better the limits of ap-
plicability of MFA in the context of the fermion systems with a
certain type of asymmetry (masses and/or densities) and work
out the physical regimes where the MFA is too crude or even
inadequate. The convenient way to estimate the corrections to
MFA is provided by the nonperturbative renormalisation group
(NRG) approach [6] which was successfully applied to the stan-
dard pairing problem with one type of fermions [7–10]. The
main element of NRG is the effective average action Γk which
is a generalisation of the standard effective action Γ , the gener-
ating functional of the 1PI Green functions. The only difference
between them is that Γk includes only quantum fluctuations
with momenta larger then the infrared scale k. The evolution
of the system as the function of the scale k is described by the
nonperturbative flow equations. When k → 0 all fluctuations
are included and full effective action is recovered. Similarly, at
starting scale k = K no fluctuations are included so Γk=K can
be associated with the classical action S therefore Γk provides
an interpolation between the classical and full quantum effec-
tive actions.
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The dependence of Γk from the infrared scale k is given by
the nonperturbative renormalisation group equation (NRGE)

(1)∂kΓ = − i

2
Tr

[
(∂kR)

(
Γ (2) − R

)−1]
.

Here Γ (2) is the second functional derivative of the effective ac-
tion taken with respect to all types of field included in the action
and R(q, k) is a regulator which should suppress the contribu-
tions of states with momenta less than or of the order of running
scale k. To recover the full effective action we require R(q, k)

to vanish as k → 0 whereas for q � k the regulator behaves
as R(q, k) � k2. The above written equation is, in general, the
functional equation. For a practical applications it needs to be
converted to the system of partial or ordinary differential equa-
tions so that approximations and truncations are required.

We consider a nonrelativistic many-body system at zero tem-
perature with two types of the fermion species a and b interact-
ing through a short-range attractive interaction and introduce a
boson field φ describing the pair of interacting fermions. The
ansatz for Γ takes the form

Γ
[
ψ,ψ†, φ,φ†,μ, k

]
=

∫
d4x

[
φ†(x)

(
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2m
∇2

)
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− U
(
φ,φ†) +

b∑
i=a

ψ
†
i

(
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2Mi

∇2
)

ψi

(2)− Zg

(
i

2
ψT

b σ2ψaφ
† − i

2
ψ†

a σ2ψ
†T
b φ

)]
.

Here Mi is the mass of the fermion in vacuum and the factor
1/2m with m = Ma + Mb in the boson kinetic term is cho-
sen simply to make Zm dimensionless. The coupling Zg , the
wave-function renormalisations factors Zφ,ψ and the kinetic-
mass renormalisations factors Zm,M all run with k, the scale
of the regulator. Having in mind the future applications to the
crossover from BCS to BEC (where chemical potential be-
comes negative) we also let the chemical potentials μa and
μb run, thus keeping the corresponding densities (and Fermi
momenta pF,i ) constant. The bosons are, in principle, cou-
pled to the chemical potentials via a quadratic term in φ,
but this can be absorbed into the potential by defining Ū =
U − (μ1 + μ2)Zφφ†φ. The evolution equations include run-
ning of chemical potentials, effective potential and all couplings
(Zφ,Zm,ZM,i,Zψ,i,Zg). However, in this Letter we allow to
run only Zφ , parameters in the effective potential (u′s and ρ0)
and chemical potentials since this is the minimal set needed to
include the effective boson dynamics.

We expand the effective potential about its minimum, φ†φ =
ρ0, so that the coefficients ui are defined at ρ = ρ0,

Ū (ρ) = u0 + u1(ρ − ρ0) + 1

2
u2(ρ − ρ0)

2

(3)+ 1

6
u3(ρ − ρ0)

3 + · · · ,
where we have introduced ρ = φ†φ. Similar expansion can be
written for the renormalisation factors. The coefficients of the

expansion run with the scale. The phase of the system is deter-
mined by the coefficient u1. We start evolution at high scale
where the system is in the symmetric phase so that u1 > 0.
When the running scale becomes comparable with the pairing
scale (close to average Fermi momentum) the system undergoes
the phase transition to the phase with broken symmetry, en-
ergy gap etc. The point of the transition corresponds to the scale
where u1 = 0. The bosonic excitations in the gapped phase are
gapless Goldstone bosons. Note, that in this phase the minimum
of the potential will also run with the scale k so that the value
ρ0(k → 0) determines the physical gap.

The evolution equation takes the following general form

∂kΓ = − i

2
Tr

[
(∂kRB)

(
Γ

(2)
BB − RB

)−1]
(4)+ i

2
Tr

[
(∂kRF )

(
Γ

(2)
FF − RF

)−1]
.

Here Γ
(2)
BB(FF) is the matrix of the second functional derivatives

of the effective action taken with respect to boson (fermion)
fields included in the action and RB (RF ) is the boson (fermion)
regulator which should suppress the contributions of states with
momenta less than or of the order of running scale k. The boson
regulator has the structure

(5)RB = RB diag(1,1).

The fermion regulator for both types of fermions has the struc-
ture

(6)RF,i = sgn
(
εi(q) − μi

)
RF,i(q,μi, k)diag(1,−1).

Note that this regulator is positive for particle states above the
Fermi surface and negative for the hole states below the Fermi
surface.

Calculating the second functional derivatives, taking the ma-
trix trace and carrying out the pole integration in the loop inte-
grals we get the evolution equation for U at constant chemical
potentials

∂kŪ = − 1

V4
∂kΓ

= −1

2

∫
d3q

(2π)3

EF,S√
E2

F,S + Δ2

× [
sgn(q − pμ,a)∂kRF,a + sgn(q − pμ,b)∂kRF,b

]
(7)+ 1

2Zφ

∫
d3q

(2π)3

EB√
E2

B − V 2
B

∂kRB.

Here

ES = (EF,a + EF,b)/2,

(8)EA = (EF,a − EF,b)/2,

and

EB(q, k) = Zm

2m
q2 + u1 + u2

(
2φ†φ − ρ0

) + RB(q, k),

(9)VB = u2φ
†φ,
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