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We point out that modern brane theories suffer from a severe vacuum energy problem. To be specific,
the Casimir energy associated with the matter fields confined to the brane, is stemming from the one
and the same localization mechanism which forms the brane itself, and is thus generically unavoidable.
Possible practical solutions are discussed, including in particular spontaneously broken supersymmetry,
and quantum mechanically induced brane tension.
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The idea that our universe is a brane embedded in a higher di-
mensional space–time has received a great deal of attention for
several reasons. First and foremost, quantum gravity seems to de-
mand it, and to that argument joins superstring/M theory which
predicts ten/eleven dimensions of space–time. Brane gravity has
made some remarkable progress over the last few years, dynam-
ical localization mechanisms have been found, and many 4-dim
general relativistic results have been reproduced [1–4].

The most fundamental and important aspect of brane theory
is that although we live in a high dimensional space (the bulk),
all Standard Model fields are localized on a 4-dim hypersurface
(the brane) with some finite thickness δ. This brane thickness is
often taken to be zero for simplifying calculations, but in all real-
istic models, especially those which include quantum corrections,
this thickness must be finite. The limits on 4-dim gravity at low
scales are fairly loose. We know that gravity is 4-dim to about
10 microns, and different brane models make use of that loose
limit. Standard Model fields, however, are much more confined.
And since no accelerator ever detected signatures that can be
interpreted as higher dimensional propagation, one deduces that
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δ � (1 TeV)−1. This upper bound is completely independent of the
brane model at hand, and will be the main source of the issue
discussed in this Letter. To be precise, it will be translated into a
lower bound on the “residual” vacuum energy on the brane, to be
regarded as an unavoidable outcome of brane gravity.

The vacuum energy problem is still an open question. According
to quantum field theory (QFT), summing the zero-point energies of
all normal modes of matter fields up to the Planck scale (or even
the QCD cutoff) gives rise to enormous energy density of the vac-
uum around us. Despite this, no such energy density seems to exist
(dark energy resembles such an energy density, but its observed
value is inexplicably smaller than QFT predicts). However, we also
know that vacuum energy does exist in some form because ef-
fects originated from vacuum fluctuations have been predicted and
measured. One such effect, and perhaps the most direct observa-
tion of vacuum energy, is the Casimir effect [5,6]. In general terms,
the Casimir effect is the variation in vacuum energy caused by the
addition of boundary conditions to the system. A quantum field
subject to boundary conditions (caused by other matter fields or
strongly curved space–time) would have a different vacuum en-
ergy than a free field. The difference between the vacuum energies
of the constrained and free field is the Casimir energy (note that
the Casimir energy is independent of the QFT cutoff). In fact, it
is the quantum backreaction of the field to the boundary con-
ditions. A concrete example of such effect is the attractive force
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Fig. 1. Effective potential: In brane scenario, the Standard Model fields are localized
around a single brane. This can be described via an effective localization potential
with a very sharp minima. The latter can be approximated by a potential well with
a certain width δ.

between two parallel conductive plates in a vacuum. The plates
create boundary conditions for the electro-magnetic field, and thus
a force is generated [5].

In brane theory this means that the localization of Standard
Model fields on the brane, regardless of the underlying mecha-
nism [7], results in essentially the same effect as the one caused
by a pair of conducting plates (Fig. 1). Several papers dealing with
the Casimir effect in brane gravity have already been presented
[8–11], but most of them focus on the Casimir effect between two
branes. Unlike the latter, the present work is model independent,
and deals with the Casimir effect generated by the familiar matter
fields embedded on a single brane. Once these fields get localized
to the brane, their confinement is analogous to the confinement of
an electro-magnetic field between conducting plates. The form of
the exact localization mechanism is unimportant, as it will always
result in the same energy up to a constant of O(1).

The Casimir energy of two plates in 4 + n dimensions with a
separation δ,1 is given by [5]

E = ηh̄ A

δ3+n
, (1)

where A is the area of the plates (hyper area, in the general case)
and η is a constant. From this point on, we will use the nota-
tion h̄ = 1. The value of η depends on n, on the exact form of
the localization potential, and on the number of Standard Model

1 We assume all Standard Model fields are localized in the same way. We also
assume for simplicity, that all masses are much lower than the localization scale
δ−1, so we may treat them as massless. Both assumptions may not be exact but
they greatly simplify the equations and deviating from these assumptions will not
modify our conclusions at all.

fields (degrees of freedom). The energy density between the plates
is therefore

ρbulk = η

δ4+n
. (2)

Since we are talking about a D3 brane, and assume more than
one extra-dimension, we do not face a parallel plate system, but
rather, cylindrical or spherical boundaries. While leaving the form
of Eq. (2) intact, this will accordingly modify the value of η. Eq. (2)
describes the bulk energy density. The energy density on the brane
is obtained by integrating out all n extra-dimensions, so that

ρ = η̃

δ4
, (3)

with η̃ �= η. This is a constant energy density on the brane, thus
it is a direct contribution to the cosmological constant.2 The exact
value of η̃ is of course model dependent, but it cannot deviate too
much from O(1). With this in mind, taking into account the exper-
imental bound on δ, we evaluate the energy density from Eq. (3)
and find

ρ � (1 TeV)4. (4)

This is to be contrasted with the much smaller value of the cos-
mological constant (dark energy) ρΛ ∼ (10−3 eV)4, leading to a
60 orders of magnitude discrepancy. Unlike the ordinary vacuum
energy, this energy cannot be ‘swept under the carpet’ because
it does not stem directly from the action, but rather, caused by
(quantum corrections due to) the abnormal structure of matter and
space–time. This constitutes a serious problem. In order for brane
theories to be realistic, one must find a way to cancel or suppress
this energy.

It is natural to turn first to supersymmetry, the natural cure for
vacuum energy [12]. If unbroken, SUSY assures an absolute cancel-
lation of the vacuum energy. However, we know that SUSY must
be broken at an energy scale MSUSY � 1 TeV. If SUSY is broken at
a much lower energy scale than the localization energy, then we
might expect a strong suppression of the Casimir energy [13]. As
a simple example, let us consider the case of a scalar field and
its superpartner “calar”. In order to perform exact calculations, we
assume one extra-dimension (n = 1) and simplify the localization
potential to be an infinite well of width δ. The Casimir energy den-
sity generated by the scalar field on the brane is given by [5]

ρscalar = −2

(
m

4π

)5/2 1

δ3/2

∞∑
j=1

K5/2(2mδ j)

j5/2
, (5)

where Kν(x) is the modified Bessel function of the second type,
and m is the mass of the scalar field. If SUSY is unbroken, the
“calar” field will give the exact same result but with an opposite
sign. However, if SUSY is broken, even at an energy scale lower
than δ−1, then the masses will be slightly corrected, such that
m2

scalar − m2
calar = �m2. In that case, and assuming MSUSY � m �

�m, the residual Casimir energy density on the brane becomes

ρ ∼= lim
m→0

�m2

2m

∂ρscalar

∂m
, (6)

where ρ = ρscalar + ρcalar. Evaluating Eq. (6) using Eq. (5), we ob-
tain

ρ = ζ(3)

64π2

(
�m

δ

)2

. (7)

2 We note that brane theories can bring forward other contributions to the cos-
mological constant. However, the Casimir energy is the only model independent
contribution.
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