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We introduce a class of rotating magnetically charged string solutions of the Einstein gravity with
a nonlinear electrodynamics source in four dimensions. The present solutions has no curvature singularity
and no horizons but has a conic singularity and yields a spacetime with a longitudinal magnetic field.
Also, we investigate the effects of nonlinearity on the properties of the solutions and find that for the
special range of the nonlinear parameter, the solutions are not asymptotic AdS. We show that when
the rotation parameter is nonzero, the spinning string has a net electric charge that is proportional to
the magnitude of the rotation parameter. Finally, we use the counterterm method inspired by AdS/CFT
correspondence and calculate the conserved quantities of the solutions.
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1. Introduction

Topological defects are inevitably formed during phase transi-
tions in the early universe, and their subsequent evolution and
observational signatures must therefore be understood. The string
model of structure formation may help to resolve one of cosmo-
logical mystery, the origin of cosmic magnetic fields [1]. There is
strong evidence from all numerical simulations for the scaling be-
havior of the long string network during the radiation-dominated
era. Apart from their possible astrophysical roles, topological de-
fects are fascinating objects in their own right. Their properties,
which are very different from those of more familiar system, can
give rise to a rich variety of unusual mathematical and physical
phenomena [2].

On another front, nonlinear electromagnetic fields are subjects
of interest for a long time. For example, there has been a re-
newed interest in Born–Infeld gravity ever since new solutions
have been found in the low energy limit of string theory. Static
and rotating solutions of Born–Infeld gravity have been considered
in Refs. [3–5].

In this Letter, we turn to the investigation of spacetimes gen-
erated by static and spinning string sources in four-dimensional
Einstein theory in the presence of a nonlinear electromagnetic field
which are horizonless and have nontrivial external solutions. The
basic motivation for studying these kinds of solutions is that they

* Address for correspondence: Physics Department, College of Sciences, Yasouj
University, Yasouj 75914, Iran.

E-mail address: hendi@mail.yu.ac.ir.

may be interpreted as cosmic strings. Cosmic strings are topo-
logical structure that arise from the possible phase transitions
to which the universe might have been subjected to and may
play an important role in the formation of primordial structures.
A short review of papers treating this subject follows. Solutions of
Einstein’s equations with conical singularities describing straight
strings can easily be constructed [6]. One needs only a spacetime
with a symmetry axis. If one then cuts out a wedge then a space
with a string lying along the axis is obtained. A nonaxisymmetric
solutions of the combined Einstein and Maxwell equations with
a string has been found by Linet [7]. The four-dimensional hori-
zonless solutions of Einstein gravity have been explored in [8,9].
These horizonless solutions [8,9] have a conical geometry; they
are everywhere flat except at the location of the line source. The
spacetime can be obtained from the flat spacetime by cutting out a
wedge and identifying its edges. The wedge has an opening angle
which turns to be proportional to the source mass. The extension
to include the Maxwell field has also been done [10]. Static and
spinning magnetic sources in three and four-dimensional Einstein–
Maxwell gravity with negative cosmological constant have been
explored in [11,12]. The generalization of these asymptotically AdS
magnetic rotating solutions to higher dimensions has also been
done [13]. In the context of electromagnetic cosmic string, it has
been shown that there are cosmic strings, known as supercon-
ducting cosmic strings, that behave as superconductors and have
interesting interactions with astrophysical magnetic fields [14]. The
properties of these superconducting cosmic strings have been in-
vestigated in [15]. Solutions with longitudinal and angular mag-
netic field were considered in Refs. [16–19]. Similar static solutions
in the context of cosmic string theory were found in Ref. [20]. All
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of these solutions [16–18,20,21] are horizonless and have a con-
ical geometry; they are everywhere flat except at the location of
the line source. The extension to include the electromagnetic field
has also been done [22,23]. The generalization of these solutions in
Einstein gravity in the presence of a dilaton and Born–Infeld elec-
tromagnetic fields has been done in Ref. [24].

Another example of the nonlinear electromagnetic field is con-
formally invariant Maxwell field. In many papers, straightforward
generalization of the Maxwell field to higher dimensions one es-
sential property of the electromagnetic field is lost, namely, con-
formal invariance. Indeed, in the Reissner–Nordström solution, the
source is given by the Maxwell action which enjoys the conformal
invariance in four dimensions. Massless spin-1/2 fields have van-
ishing classical stress tensor trace in any dimension, while scalars
can be “improved” to achieve T α

α = 0, thereby guaranteeing invari-
ance under the special conformal (or full Weyl) group, in accord
with their scale-independence [25]. Maxwell theory can be stud-
ied in a gauge which is invariant under conformal rescalings of the
metric, and at first, have been proposed by Eastwood and Singer
[26]. Also, Poplawski [27] have been showed the equivalence be-
tween the Ferraris–Kijowski and Maxwell Lagrangian results from
the invariance of the latter under conformal transformations of
the metric tensor. Quantized Maxwell theory in a conformally in-
variant gauge have been investigated by Esposito [28]. In recent
years, gravity in the presence of nonlinear and conformally invari-
ant Maxwell source have been studied in many papers [29,30].

The outline of our Letter is as follows. We give a brief review
of the field equations of Einstein gravity in the presence of cosmo-
logical constant and nonlinear electromagnetic field in Section 2.
In Section 3 we present static horizonless solutions which produce
longitudinal magnetic field, compare it with the solutions of the
standard electromagnetic field and then investigate the properties
of the solutions and the effects of nonlinearity of the electromag-
netic field on the deficit angle of the spacetime. Section 4 will be
devoted to the generalization of these solutions to the case of ro-
tating solutions and use of the counterterm method to compute
the conserved quantities of them. We finish our Letter with some
concluding remarks.

2. Basic field equations

Our starting point is the four-dimensional Einstein-nonlinear
Maxwell action

IG = − 1

16π

∫
M

d4x
√−g

(
R − 2Λ − αF s)

− 1

8π

∫
∂M

d3x
√−γ Θ(γ ), (1)

where R is the scalar curvature, Λ is the cosmological constant,
F is the Maxwell invariant which is equal to Fμν F μν (where
Fμν = ∂μ Aν − ∂ν Aμ is the electromagnetic tensor field and Aμ

is the vector potential), α and s is a coupling and arbitrary con-
stant respectively. The last term in Eq. (1) is the Gibbons–Hawking
surface term. It is required for the variational principle to be well-
defined. The factor Θ represents the trace of the extrinsic curva-
ture for the boundary ∂M and γ is the induced metric on the
boundary. Varying the action (1) with respect to the gravitational
field gμν and the gauge field Aμ , yields

Gμν + Λgμν = Tμν, (2)

∂μ

(√−g F μν F s−1) = 0. (3)

In the presence of nonlinear electrodynamics field, the energy–
momentum tensor of Eq. (2) is

Tμν = 2α

[
sFμρ F ρ

ν F s−1 − 1

4
gμν F s

]
. (4)

The conserved mass and angular momentum of the solutions of
the above field equations can be calculated through the use of
the substraction method of Brown and York [31]. Such a procedure
causes the resulting physical quantities to depend on the choice of
reference background. A well-known method of dealing with this
divergence for asymptotically AdS solutions of Einstein gravity is
through the use of counterterm method inspired by AdS/CFT cor-
respondence [32]. In this Letter, we deal with the spacetimes with
zero curvature boundary, Rabcd(γ ) = 0, and therefore the countert-
erm for the stress–energy tensor should be proportional to γ ab .
We find the suitable counterterm which removes the divergences
as

Ict = − 1

4π

∫
∂M

d3x

√−γ

l
. (5)

Having the total finite action I = IG + Ict, one can use the quasilo-
cal definition to construct a divergence free stress–energy ten-
sor [31]. Thus the finite stress–energy tensor in four-dimensional
Einstein-nonlinear Maxwell gravity with negative cosmological
constant can be written as

T ab = 1

8π

[
Θab − Θγ ab + 2γ ab

l

]
. (6)

The first two terms in Eq. (6) are the variation of the action (1)
with respect to γab , and the last term is the variation of the bound-
ary counterterm (5) with respect to γab . To compute the conserved
charges of the spacetime, one should choose a spacelike surface B
in ∂M with metric σi j , and write the boundary metric in ADM
(Arnowitt–Deser–Misner) form:

γab dxa dxa = −N2 dt2 + σi j
(
dϕ i + V i dt

)(
dϕ j + V j dt

)
,

where the coordinates ϕ i are the angular variables parameteriz-
ing the hypersurface of constant r around the origin, and N and
V i are the lapse and shift functions, respectively. When there is
a Killing vector field ξ on the boundary, then the quasilocal con-
served quantities associated with the stress tensors of Eq. (6) can
be written as

Q (ξ) =
∫

B

d2x
√

σ Tabnaξb, (7)

where σ is the determinant of the metric σi j , ξ and na are, re-
spectively, the Killing vector field and the unit normal vector on
the boundary B. For boundaries with timelike (ξ = ∂/∂t) and ro-
tational (ς = ∂/∂φ) Killing vector fields, one obtains the quasilocal
mass and angular momentum

M =
∫

B

d2x
√

σ Tabnaξb, (8)

J =
∫

B

d2x
√

σ Tabnaςb. (9)

These quantities are, respectively, the conserved mass and angular
momentum of the system enclosed by the boundary B. Note that
they will both depend on the location of the boundary B in the
spacetime, although each is independent of the particular choice
of foliation B within the surface ∂M.
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