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We investigate gauge-Higgs unification models in eight-dimensional spacetime where extra-dimensional
space has the structure of a four-dimensional compact coset space. The combinations of the coset space
and the gauge group in the eight-dimensional spacetime of such models are listed. After the dimensional
reduction of the coset space, we identified SO(10), SO(10) x U(1) and SO(10) x U(1) x U(1) as the
possible gauge groups in the four-dimensional theory that can accomodate the Standard Model and thus
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1. Introduction

The Standard Model has been eminently successful in describ-
ing the interactions of the elementary particles. A crucial role
of this model is played by the Higgs scalar, which develops the
vacuum expectation value to give the masses to the elementary
particles and to trigger the breaking of the gauge symmetry from
SU@3)c x SUR)L x U(1)y down to SUB3)c x U(1)gm. On the other
hand, the most fundamental nature of the Higgs scalar such as
its mass is not predictable within the Standard Model. Thus, the
search for the nature of this particle is essential both for the confir-
mation of the Standard Model and for the search for new physics.

The gauge-Higgs unification is an attractive approach to account
for the origin of the Higgs scalars [1-3] (for recent approaches, see
Refs. [4-20]). This approach counts the Higgs scalars as compo-
nents of the gauge bosons in the spacetime with the dimension
higher than four, and attributes their properties to the physical se-
tups such as the gauge symmetry and the compactification scale of
the extra-dimensional space. We consider this idea in the scheme
of the coset space dimensional reduction, in which the extra-
dimensional space is assumed to be a coset space of compact Lie
groups, and the gauge transformation is identified as the trans-
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lation within this space [1,21-26]. This identification determines
both the gauge symmetry and the particle contents of the four-
dimensional theory.

A phenomenologically promising gauge theory in a D-dimen-
sional spacetime, where D > 4, should reproduce the Standard
Model after the dimensional reduction. Theories in six- and ten-
dimensional spacetime has attracted much attention so far in this
regard. The chiral structure of the matter content as in the Stan-
dard Model is easy to introduce in these cases, more generally
when D =4n + 2 [27,28]. Fermions belonging to a vectorlike rep-
resentation in (4n + 2)-dimensional gauge theory can end up in
a chiral fermion after dimensional reduction by simultaneously
applying the Weyl and the Majorana conditions, which are com-
patible in this dimensionality. This advantage increases the chance
for the higher-dimensional model to be a promising candidate. No
theories have been found quite promising, however, for the 6, 10,
and 14 dimensional spacetimes [22,26,29-36].

We examine the theories in eight-dimensional spacetimes to
search further for promising theories. The dimension of the extra-
dimensional space d = D — 4 is four in this case, and the small
d makes the problem tractable. More importantly, the dimension
D =8 is below the critical dimension of the string theories, which
may thus supply the ultraviolet completions to models in a space-
time of this dimensionality. On the other hand, we need to confine
ourselves to the complex representations for the representations of
the fermions, unlike the case of D =4n + 2.

We search for the eight-dimensional gauge theory that leads
to the Standard Model, the GUTs, or their likes. We exhaustively
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search for the possible candidates of coset space S/R and the
gauge group G of the eight-dimensional theory. The representation
for the gauge bosons is then automatically determined. The repre-
sentation of the fermions is searched up to 1000-dimensional ones,
while even larger representations are avoided lest it should gener-
ate numerous unwanted fermions after the dimensional reduction.
We also tabulate the representation of the scalars and fermions
under the gauge group of the four-dimensional theory.

This Letter is organized as follows. In Section 2, we briefly re-
capitulate the scheme of the coset space dimensional reduction
(CSDR) in eight dimensions. In Section 3, we search for the candi-
date of models in eight dimensions which lead to phenomenolog-
ically promising theories in four-dimensions after the dimensional
reduction. Section 4 is devoted to summary and discussions.

2. CSDR scheme in eight dimensions

In this section, we briefly recapitulate the scheme of the coset
space dimensional reduction in eight dimensions [22].

We begin with a gauge theory defined on an eight-dimensional
spacetime M3 with a simple gauge group G. Here M8 is a direct
product of a four-dimensional spacetime M* and a compact coset
space S/R, where S is a compact Lie group and R is a Lie subgroup
of S. The dimension of the coset space S/R is thus 4 =8 — 4, im-
plying dim S —dim R = 4. This structure of extra-dimensional space
requires the group R be embedded into the group SO(4), which is
a subgroup of the Lorentz group SO(1, 7). Let us denote the coor-
dinates of M® by XM = (x*, y®), where x* and y* are coordinates
of M* and S/R, respectively. The spacetime index M runs over
me{0,1,2,3} and @ € {4,5,6,7}. In this theory, we introduce a
gauge field Ay (x,y) = (Au(x, ¥), Ax(x, y)), which belongs to the
adjoint representation of the gauge group G, and fermions ¥ (x, y),
which lies in a representation F of G.

The extra-dimensional space S/R admits S as an isometric
transformation group. We impose on Ap(X) and ¥ (X) the fol-
lowing symmetry under this transformation in order to carry
out the dimensional reduction [21,37-41]. Consider a coordi-
nate transformation which acts trivially on x and gives rise to a
S-transformation on y as (x, y) — (x, sy), where s € S. We require
that the transformation of Ap(X) and v (X) under this coordi-
nate transformation be compensated by a gauge transformation.
This symmetry makes the eight-dimensional Lagrangian invariant
under the S-transformation and therefore independent of the co-
ordinate y of S/R. The dimensional reduction is then carried out
by integrating the eight-dimensional Lagrangian over the coordi-
nate y to obtain the four-dimensional one. The four-dimensional
theory consists of the gauge fields A, fermions , and in addi-
tion the scalar fields originated from A,. The gauge group reduces
to a subgroup H of the original gauge group G.

The gauge symmetry and particle contents of the four-dimen-
sional theory are substantially constrained by the CSDR scheme.
We provide below the prescriptions to identify the four-dimensional
gauge group H and its representations for the particle contents.

First, the gauge group of the four-dimensional theory H is easily
identified as

H=Cc(R), (1)

where Cg(R) denotes the centralizer of R in G [21]. Thus the four-
dimensional gauge group H is determined by the embedding of R
into G. These conditions imply

GDOH xR, (2)

up to U(1) factors.

Second, the representations of H for the scalar fields are spec-
ified by the following prescription. Let us decompose the adjoint
representation of S according to the embedding S D R as

Table 1

A complete list of four-dimensional coset spaces S/R with rankS = rankR. We also
list the decompositions of the vector representation 4 and the spinor representation
(21,1) + (1,2;) of SO(4) >~ SU(2)1 x SU(2), under the Rs. The representations of r
in Eq. (3) and o4; and oy; in Eq. (6) are listed in the columns of “Branches of 4”
and “Branches of 2", respectively.

S/R Branches of 4 Branches of 2

(i) Sp(4)/[SU(2) x SU(2)] (2,2) (2,1) and (1, 2)

(ii) SU@3)/[SU2) x U(1)] 2(%1) 2(0) and 1(£1)

(i) (SU(2)/U(1))2 (&1, £1) (&1,0) and (0, £1)

adjS=adjR+ ) rs. 3)
S

We then decompose the adjoint representation of G according to
the embeddings G D H x R;

adjG = (adjH, 1) + (1, adj R)+Z(hg,rg), (4)
g

where rgs and hgs denote representations of R and H, respectively.
The representation of the scalar fields are hgs whose correspond-
ing rgs in the decomposition Eq. (4) are also contained in the set
{rs} in Eq. (3).

Third, the representation of H for the fermion fields is deter-
mined as follows [42]. The SO(1,7) Weyl spinor 8 is decomposed
under its subgroup (SU(2)L x SU(2)r)(=~ SO(1,3)) x (SU(2); x
SU(2)2)(~SO(4)) as

8=1(21,1,21, 1)+ 1,2z, 1,2), (3)

where (2;,1) and (1, 2p) representations of SU(2); x SU(2)r cor-
respond to left- and right-handed spinors, respectively. The group
R is embedded into the Lorentz (SO(1, 7)) subgroup SO(4) in such
a way that the vector representation 4 of SO(4) is decomposed as
4 =15, where rss are the representations obtained in the de-
composition Eq. (3). This embedding specifies a decomposition of
the spinor representations (21, 1)((1,2;)) of SU(2); x SU(2) D R
as

21, 1)=) (ou) <<1, %)= Z(Uzi))~ (6)

We now decompose representation F of the gauge group G for the
fermions in eight-dimensional spacetime. Decomposition of F is

F=Y (hs.rp). (7
f

under G D H x R. The representations for the left-handed (right-
handed) fermions are hys whose corresponding rys are found in
01i(0>;) obtained in Eq. (6).

A phenomenologically acceptable model needs chiral fermions
in four dimensions as the SM does. The SO(1,7) spinor is not
self-dual and its charge conjugate state is in a different repre-
sentation from itself. Thus the Majorana condition cannot be used
to obtain a chiral structure from a vectorlike representation of G.
Therefore, we need to introduce complex representation for eight-
dimensional fermions. Thus eight-dimensional model possesses a
completely different feature from (4n + 2)-dimensional models.
We must work on complex representation for eight-dimensional
fermions.

Finally coset space S/R of our interest should satisfy rank S =
rank R to generate chiral fermions in four dimensions [43]. We list
all of four-dimensional coset spaces S/R satisfying the condition
and decompositions of SO(4) spinor and vector representation in
Table 1.
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