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The η production in the (n,n′) bottomonium transitions Υ (n) → Υ (n′)η, is studied in the method
used before for dipion heavy quarkonia transitions. The widths Γη(n,n′) are calculated without fitting
parameters for n = 2,3,4,5, n′ = 1. Resulting Γη(4,1) is found to be large in agreement with recent
data. Multipole expansion method is shown to be inadequate for large size systems considered.
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1. Introduction

The η and π0 production in heavy quarkonia transitions is
attracting attention of experimentalists for a long time [1]. The
first result refers to the ψ(2S) → J/ψ(1S)η process (to be de-
noted as ψ(2,1)η in what follows, similarly for Υ ) with

Γη

Γtot
=

(3.09 ± 0.08)% [1], Γtot = 337 ± 13keV.
For the Υ (2,1)η and Υ (3,1)η transitions only upper lim-

its B < 2 × 10−3 and B < 2.2 × 10−3 were obtained in [2] and
[3] correspondingly and preliminary results appeared recently in
[4], B(Υ (2,1)η) = (2.5 ± 0.7 ± 0.5)10−4, B(Υ (2,1)π0) < 2.1 ×
10−4(90% c.l.) and B(Υ (3,1)η) < 2.9 × 10−4 in [5].

On theoretical side the dominant approach for both dipion and
single η and π production is the Multipole Expansion Method
(MEM) (see [6,7] and references therein), where it is assumed that
heavy quarks emit two gluons and the latter are converted into
meson(s) by a not clarified mechanism. An essential requirement
for this mechanism in QED is the smallness of the source size r0
as compared to the wavelength, so that r0k � 1.

In reality both for charmonium and bottomonium transitions
r0k � 1, but it is not this parameter which invalidates MEM for
heavy quarkonia. It appears, that in QCD there is another impor-
tant length parameter, the QCD vacuum correlation length λ, which
makes it impossible to emit freely gluons at points separated by
distance r, r > λ.

The value of λ was found on the lattice and analytically, λ �
0.2 fm [8]. Since r.m.s. radii of all excited cc̄,bb̄ states are larger
than 0.5 fm1 all vacuum gluons there are correlated forming the
QCD string and emission of additional gluons (if any) implies for-
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1 In reality the r.m.s. radius r0 of heavy quarkonia is not small, e.g. for Υ (nS) it
is equal to 0.2 fm, 0.5 fm, 0.7 fm, 0.9 fm, for n = 1,2,3,4,5, and for charmonium
this radius is even larger: 0.4 fm and 0.8 fm for n = 1 and 2, respectively.

Table 1
Predicted splittings, between spin-averaged levels, and experiment.

Splitting MEM [11] FCM [12] exp [1]

2S–1S(bb̄) 479 557 558 MeV
2S–1P (bb̄) 181 122 123 MeV
3S–2S(bb̄) 4570 348 332 MeV
2S–1S(cc̄) 9733 610 606 MeV

mation of heavy hybrids. All this is considered in detail in Field
Correlator Method (FCM) [9].

One can make an independent check of MEM in application to
the bottomonium level calculation. Here MEM yields nonperturba-
tive correction to the levels expressed via gluonic condensate [10].
Comparison to the experimental data shows (see [11] and Table 1)
that for all level splittings except (2S–1S) in bottomonium, MEM
prediction is more than 50% off, while for charmonium MEM does
not work at all. Thus one concludes that only at distances below or
equal 0.2 fm, MEM can give reasonable results, while for all states
of charmonium and all excited states of bottomonium (where sizes
are much larger than vacuum correlation length λ) the application
of MEM is unjustifiable.

A similar failure of MEM is found in applications to dipion bot-
tomonium transitions, where using MEM one can fit dipion spectra
in Υ (2,1)ππ , but not in Υ (3,1)ππ and Υ (4,2)ππ [6,7]. In con-
trast to that, FCM as will be discussed below explains both spectra
and cos θ dependence for all dipion transitions in universal ap-
proach with two fixed parameters.

In FCM large distances are under control and not single gluons
but combined effect of all gluons in the string defines the dynam-
ics.

In particular, single eta emission in heavy quarkonia proceeds
via string breaking due to qq̄ pair creation with simultaneous
emission of π or η. The flavor SU(3) violation in η production then
resides in difference of threshold positions and wave functions for
B B̄ and Bs B̄s (D D̄ and Ds D̄s) intermediate states.
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As it is clear, the dynamics of FCM for η emission does not
depend strongly on heavy quark mass, and only sizes of initial and
final heavy quarkonia states and intermediate heavy–light mesons
enter in the form of overlap matrix elements.

In contrast to that, MEM predicts a strong dependence on the
heavy quark mass, Γη(n,n′) = O ( 1

m2
Q

). In addition in [7] a strong

suppression of the ratio Γη/Γππ with the growth of the energy re-

lease 	M = M(n)− M(n′),Γη/Γππ ∼ p3
η

(	M)7 is predicted for higher

excited states of quarkonia and bottomonia, which does not agree
with experiment (see below).

Using models based on MEM in [6] small ratios of widths

Γ (Υ (2,1)η)

Γ (ψ(2,1)η)
∼= 2.5 × 10−3 and

Γ (Υ (3,1)η)

Γ (ψ(2,1)η)
= 1.3 × 10−3 (1)

have been predicted, with the model property that the bottomo-
nium yields of η would be smaller than those of charmonium;
specifically in the method of [6], the width is proportional to
p3/m2

Q , so that for Υ (4,1)η the ratio Γ (Υ (4,1)η)
Γ (ψ(2,1)η)

≈ 3.3 × 10−3.
However recently [13] new BaBar data have been published on

Υ (4,1)η with the branching ratio

B
(
Υ (4,1)η

) = (1.96 ± 0.06 ± 0.09)10−4 (2)

and [13]

Γ (Υ (4,1)η)

Γ (Υ (4,1)π+π−)
= 2.41 ± 0.40 ± 0.12. (3)

This latter result is very large, indeed the corresponding ra-
tio Γ (Υ (4,1)η)

Γ (ψ(2,1)η)
is ≈ 0.4 and theoretical estimates (1) from [6] for

a similar ratio yields 3.3 × 10−3. Thus, the experimental ratio is
very large as compared to MEM predictions [6,7]. All this suggests
that another mechanism can be at work in single η production
and below we exploit the approach based on the Field Correla-
tor Method (FCM) recently applied to Υ (n,n′)ππ transitions with
n � 3 in [14,15], n � 4 in [16] and n = 5 in [17,18].

In this Letter we confront MEM and FCM and show that re-
cent experimental data on single η production in Υ (4S)–Υ (1S)

transition give a strong support to the FCM result and cannot be
explained in the framework of MEM.

The method essentially exploits the mechanism of Internal Loop
Radiation (ILR) with light quark loop inside heavy quarkonium and
has two fundamental parameters — mass vertices in chiral light
quark pair qq̄ creation Mbr ≈ fπ and pair creation vertex without
pseudoscalars, Mω ≈ 2ω, where ω(ωs) is the average energy of the
light (strange) quark in the B(Bs) meson. Those are calculated with
relativistic Hamiltonian [12] and considered as fixed for all types of
transitions ω = 0.587 GeV, ωs = 0.639 GeV (see Appendix 1 of [14]
for details).

Any process of heavy quarkonium transition with emission of
any number of Nambu–Goldstone (NG) mesons is considered in
ILR as proceeding via intermediate states of B B̄ , B B̄∗ + c.c., Bs B̄s ,
etc. (or equivalently D D̄ , etc.) with NG mesons emitted at vertices.

For one η or π0 emission one has diagrams shown in Fig. 1,
where dashed line is for the NG meson. As shown in [14–16], based
on the chiral Lagrangian derived in [19], the meson emission vertex
has the structure

LCDL = −i

∫
d4x ψ̄(x)Mbr Û (x)ψ(x), (4)

Û = exp

(
iγ5

ϕaλa

fπ

)
,

ϕaλa = √
2

⎛
⎜⎜⎝

η√
6

+ π0√
2

π+ K +

π− η√
6

− π0√
2

K 0

K − K̄ 0 − 2η√
6

⎞
⎟⎟⎠ . (5)

(a)

(b)

Fig. 1. Single eta production (dashed line) from Υ (n)B B∗ vertex (a), and B B∗Υ (n′)
vertex (b).

The lines (1,2,3) in the Û matrix (2) refer to u,d, s quarks and
hence to the channels B+B−, B0 B̄0, B0

s B̄0
s (and to the correspond-

ing channels with B∗ instead of B). Therefore the emission of a
single η in heavy quarkonia transitions requires the flavour SU(3)

violation and resides in our approach in the difference of chan-
nel contribution B B̄∗ and Bs B̄∗

s , while the π0 emission is due the
difference of B0 B̄0∗ and B+B−∗ channels (with B → D for char-
monia).

The Letter is devoted to the explicit calculation of single η
emission widths in bottomonium Υ (n,1)η transitions with n =
2,3,4,5. Since theory has no fitting parameters (the only ones, Mω

and Mbr are fixed by dipion transitions) our predictions depend
only on the overlap matrix elements, containing wave functions of
Υ (nS), B, Bs, B∗, B∗

s . The latter have been computed previously in
relativistic Hamiltonian technic in [12] and used extensively in di-
pion transitions in [16–18].

The Letter is organized as follows. In Section 2 general ex-
pressions for process amplitudes are given; in Section 3 results of
calculations are presented and discussed and a short summary and
prospectives are given.

2. General formalism

The process of single NG boson emission in bottomonium tran-
sition is described by two diagrams depicted in Fig. 1(a) and (b)
which can be written according to the general formalism of FCM
[14,16,17] as (we consider η emission), see Appendix A for more
detail,

M = M(1)
η + M(2)

η , M(i)
η = M(i)

Bs B∗
s
− M(i)

B B∗ , i = 1,2. (6)

For the diagram of Fig. 1(a) the amplitude for intermediate B B∗ or
Bs B∗

s state can be written as

M(1)
η =

∫
J (1)
n (p,k) Jn′ (p)

E − E(p)

d3p

(2π)3
, (7)

while M(2)
η , corresponding to the diagram of Fig. 1(b), has the

same form, but without NG boson energy in the denominator
of (7). The overlap integrals of Υ (nS) and B B∗ wave functions with
emission of η with momentum k are denoted by J (i)

n (p,k), the
corresponding integrals without η emission are given by Jn′ (p).

Finally we define all quantities in the denominator of (7); in
M(1)

B B∗ the denominator is

E − E(p) = M
(
Υ (nS)

) −
(
ωη + MB + M∗

B + p2

2MB
+ (p − k)2

2M∗
B

)

≡ −	M∗ − ωη − E(p,k). (8)
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