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We extend the method of Kerr/CFT correspondence recently proposed in arXiv:0809.4266 [hep-th] to the
extremal (charged) Kerr black hole embedded in the five-dimensional Gödel universe. With the aid of
the central charges in the Virasoro algebra and the Frolov–Thorne temperatures, together with the use
of the Cardy formula, we have obtained the microscopic entropies that precisely agree with the ones
macroscopically calculated by Bekenstein–Hawking area law.
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1. Introduction

During the past decades, a lot of efforts have been devoted to
studying the origin of Bekenstein-Hawking entropy for the black
holes. Great progress has been made in their statistical interpre-
tation thanks to Strominger and Vafa’s remarkable work [1] on
the investigation of the microscopic origin of the five-dimensional,
supersymmetric (extremal) black hole entropy by using the holo-
graphic duality in the context of string theory. When the near-
horizon limit has been taken, their work can be viewed as a typ-
ical example of the AdS/CFT correspondence [2–4], which shows
that there exists a duality between the higher dimensional gravity
and the CFT living on the boundary in less dimensions, provid-
ing a powerful tool to study the microscopic statistical mechanics
of the black holes. By contrast, without using any supersymmetry,
Strominger [5] has successfully evaluated the Bekenstein–Hawking
entropy of the three-dimensional BTZ black hole by counting the
number of the microstates in the two-dimensional CFT induced on
the boundary of spatial infinity [6].

Quite recently, Guica, Hartman, Song and Strominger [7] put
forward a new method called as Kerr/CFT correspondence to de-
rive the microscopic entropy of the four-dimensional extremal Kerr
black hole by identifying the quantum states in its near-horizon re-
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gion with the two-dimensional chiral CFT on the spatially infinite
boundary. The main ideas of their method go as follows: On the
basis of the near-horizon geometry found in [8,9], one can con-
struct diffeomorphisms that preserve a properly chosen boundary
condition at the infinity. These diffeomorphisms generate one copy
of the Virasoro algebra and contribute to the conserved charges. By
computing the Dirac brackets of these charges, the central charge
relative to the angular momentum of the extremal black hole can
be obtained. Making use of the Frolov and Thorne temperature
[10], the microscopic entropy in the dual CFT can be reproduced
via the Cardy formula. Following this work, the microscopic en-
tropies of the three-dimensional black hole and Kerr–AdS black
holes in diverse dimensions were derived [11,12]. In Refs. [13,14],
the Kerr/CFT correspondence was applied to the black holes with
U (1) gauge symmetry. Further extensions [15–18] has been made
in (gauged) supergravity theory and string theory.

In this Letter, we shall apply the Kerr/CFT correspondence
to the extremal (charged) Kerr black hole embedded in the
five-dimensional Gödel universe [19,20], which is dubbed as a
(charged) Kerr–Gödel black hole for shortness. These black hole
metrics are exact solutions in the five-dimensional minimal super-
gravity. They possess some peculiar features such as the presence
of closed time-like curves, and the absence of globally spatial-like
Cauchy surface. Our Letter is organized as follows. In Section 2,
we simply review the Kerr–Gödel black hole and obtain its near-
horizon metric under the extremal condition. Based upon the
near-horizon metric, we then calculate the central charge and mi-
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croscopic entropy of the extremal Kerr–Gödel black hole in the
chiral dual CFT. In Section 3, we extend the analysis to the ex-
tremal charged Kerr–Gödel black hole. Finally, in Section 4, we end
up with our conclusions.

2. Extremal Kerr–Gödel black hole and the dual CFT

In this section, we will generalize the method developed in [7,
14] to explore the duality between the extremal Kerr–Gödel black
hole [19] and the chiral CFT by showing the equality of the micro-
scopic CFT entropy and the Bekenstein–Hawking entropy. We first
give a brief review of the Kerr–Gödel black hole solution [19] and
then study its near-horizon geometry. Let’s start with the metric

ds2 = −
(

1 − 2μ

r̂2

)
dt̂2 + dr̂2

Δr̂

− 4

(
jr̂2 + μa

r̂2

)(
cos2 θ dφ̂ + sin2 θ dψ̂

)
dt̂

− 4r̂2
(

j2r̂2 + 2 j2μ − μa2

2r̂4

)(
cos2 θ dφ̂ + sin2 θ dψ̂

)2

+ r̂2(dθ2 + cos2 θ dφ̂2 + sin2 θ dψ̂2), (1)

and the gauge potential which takes the form

A = √
3 jr̂2(cos2 θ dφ̂ + sin2 θ dψ̂

)
, (2)

where

Δr̂ = 1 − 2μ

r̂2
+ 16 j2μ2

r̂2
+ 8 jμa

r̂2
+ 2μa2

r̂4
. (3)

In the above, the parameters μ and a are related to the mass
and the angular momenta, respectively, while j defines the scale
of the Gödel background and is responsible for the rotation of the
universe. Without loss of generality, we assume μ, a and j are
all positive. The metric (1) describes the rotating black hole with
two equal angular velocities in the five-dimensional Gödel uni-
verse. The angular velocities and the electro-static potential on the
horizon are given by

ΩH
φ̂

= ΩH
ψ̂

= 2
(

jr̂4
H + μa

)
/η,

ΦH = −2
√

3 jr̂2
H

(
jr̂4

H + μa
)
/η, (4)

where the event horizon r̂H and constant η read

r̂2
H = μ − 4μ ja − 8 j2μ2

+ μ
√(

1 − 8μ j2
)(

1 − 8μ j2 − 8 ja − 2μ−1a2
)
,

η = r̂4
H + 2μa2 − 4 j2r̂6

H − 8μ j2r̂4
H .

The temperature and the entropy are

S = 2π2r̂H
√

η, T H = r̂2
H − μ + 4 jμa + 8 j2μ2

π r̂H
√

η
. (5)

In [21], the conserved quantities such as the mass, the angular mo-
menta and the electrical charge have been computed as

M = 3

4
πμ − 8π j2μ2 − π jμa,

J
φ̂

= J
ψ̂

= 1

2
πμa − π jμa2 − 4πaj2μ2,

Q = 2
√

3π jμa. (6)

Treating the Gödel parameter j as a fixed constant, we find that
the variation of the mass, the angular momenta and the electrical
charge satisfy the differential form of the first law

dM = T H dS + ΩH
φ̂

d J
φ̂

+ ΩH
ψ̂

d J
ψ̂

+ ΦH dQ. (7)

However, if we take j as a thermodynamical variable, a conjugate
generalized force should be introduced [20] to fulfill the first law
of the black hole thermodynamics.

Now we turn our attention to the analysis of the near-horizon
geometry of the extremal Kerr–Gödel black hole. The extremity
condition is

j = (μ − r2
0)

√
2

4μ3/2
, a = r2

0√
2μ

, (8)

where r0 is the horizon radius of the extremal black hole, which
makes the temperature T H vanish. Under the extremal condition
(8), to obtain the near-horizon geometry of the Kerr–Gödel black
hole, we perform the coordinate transformation as follows

r̂ = r0 + r0λr, t̂ =
r0(μ + r2

0)

√
2(2μ − r2

0)

8μ3/2λ
t,

φ̂ = φ +
√

2μ − r2
0

4r0λ
t, ψ̂ = ψ +

√
2μ − r2

0

4r0λ
t, (9)

and then take the scaling parameter λ to zero, thus sending the
metric (1) to the form

ds2 = 1

4
r2

0

(
−r2 dt2 + dr2

r2
+ 4 dθ2

)

− r4
0(3μ2 − r4

0)

2μ3
cos2 θ sin2 θ (dφ − dψ)2

+ r2
0(2μ − r2

0)(μ + r2
0)2

2μ3

× [
cos2 θ (dφ + αr dt)2 + sin2 θ (dψ + αr dt)2], (10)

where

α = r0(3μ − r2
0)

2(μ + r2
0)

√
2μ − r2

0

. (11)

The near-horizon metric (10) depicts a 3-sphere bundle over the
AdS2 space. It only partially covers the near-horizon geometry of
the extremal Kerr–Gödel black hole (1). One can perform global co-
ordinate transformation to the coordinates (t, r) in order to make
the metric (10) overlay the whole space in a single patch [9,15].

By virtue of the conformal structure of the near-horizon metric
(10), it is possible for us to compute the central charges in the
chiral CFT. Since there exist two rotations corresponding to φ and
ψ , respectively, when the-near horizon metric (10) is assumed to
have a certain suitable boundary, it can be shown as did in [7] that
this metric can possess two commuting diffeomorphisms

ζ
(1)
n = −e−inφ∂φ − inre−inφ∂r,

ζ
(2)
n = −e−inψ∂ψ − inre−inψ∂r (n = 0,±1,±2, . . .), (12)

which preserve the chosen boundary and generate two copies of
commuting Virasoro algebra

i
[
ζ

(i)
m , ζ

( j)
n

] = (m − n)δi jζ
(i)
m+n (i, j = 1,2). (13)

Each diffeomorphism ζ
(i)
m is associated to a conserved charge de-

fined by [22–25]

Q
ζ

(i)
n

= 1

8π

∫
∂Σ

k
ζ

(i)
n

[h, g], (14)

where ∂Σ is a spatial slice that extends to the infinity and the
3-form k

ζ
(i)
n

[h, g] is written as
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