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We show that to n loop order the divergent content of a Feynman amplitude is spanned by a set of
basic (logarithmically divergent) integrals I(i)

log(λ
2), i = 1,2, . . . ,n, λ being the renormalization group scale,

which need not be evaluated. Only the coefficients of the basic divergent integrals are show to determine
renormalization group functions. Relations between these coefficients of different loop orders are derived.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Implicit regularization (IR) is a non-dimensional momentum space framework which has been claimed to be a strong candidate for
an invariant regularization suitable to develop perturbation theory in supersymmetric gauge field theories [1–17]. Assuming an implicit
regulator in a general (multiloop) Feynman amplitude, a mathematical identity at the level of propagators allows to write the divergent
content as basic divergent integrals (BDI) or loop integrals written in terms of one internal momentum only in an unitarity preserving
fashion. This is possible because BPHZ subtractions as well as the counterterm method are compatible with IR to arbitrary loop order.
An arbitrary scale appears via a regularization-independent identity which relates two logarithmically BDIs by trading a mass parameter
m (or an infrared regulator in the propagators) for an arbitrary positive parameter λ ([λ] = M) plus a function of m/λ. Consequently, λ

parametrizes the freedom of separating the divergent content of an amplitude and acts as a renormalization group scale. The key point
underlying IR is that neither the (regularization-dependent) BDIs nor their derivatives with respect to λ represented by BDIs need be
evaluated. In other words, the BDIs are readily absorbed into renormalization constants whose derivatives with respect λ used to calculate
renormalization group functions can also be expressed by BDIs. The advantage of such scheme is that a physical amplitude is written as a
finite part plus a set of BDIs say I(i)

log(λ
2) and finite surface terms (STs) expressed by volume integrals of a total derivative in momentum

space which stem from (finite) differences between I(i)
log(λ

2) and I(i)μ1μ2...

log (λ2) where the latter is a logarithmically divergent integral which
contains in the integrand a product of internal momenta carrying Lorentz indices μ1,μ2, . . . . In other words throughout the reduction
of the amplitude to loop integrals, I(i)μ1μ2...

log (λ2) may be written as a product of metric tensors symmetrized in the Lorentz indices times

I(i)
log(λ

2) plus a surface term.
Such STs are in principle arbitrarily valued. However, it has been shown that setting them to zero ab initio corresponds to both invoking

translational invariance of Green’s functions and allowing shifts in the integration variable in momentum space [4,5] which in turn is an
essential ingredient to demonstrate gauge invariance based on a diagrammatic proof. Therefore STs seem to encode the possible symmetry
breakings. Moreover, it has been verified that constraining such surface terms to nought is also sufficient to guarantee that supersymmetry
is preserved in the Wess–Zumino model to 3nd-loop order [10] and supergravity to 1-loop order [14]. Notwithstanding it is reasonable
to assert that IR is a good candidate to an invariant calculational friendly regularization framework valid in arbitrary loop order. From
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the point of view of algebraic renormalization, STs would be the necessary symmetry restoring counterterms whose expression is known
within IR. Then a constrained version of IR (CIR) amounts to setting them to zero from the start and thus constituting an invariant scheme.
When physical quantum breakings (anomalies) are expected some care must be exercised: one is able to spot a genuine breaking by letting
the STs to be arbitrary so to verify that none consistent set of values for the STs dictated by symmetry requirements fulfill all the essential
Ward identities of the underlying model at the same time [7,12]. In [2,5] the rules that define IR to arbitrary loop order are specified.

A renormalization group equation can immediately be written within IR adopting λ as a renormalization group scale and a minimal,
mass-independent renormalization scheme in which only the basic divergent integrals are absorbed in the renormalization constants.
Hence renormalized Green’s function satisfy a kind of Callan–Symanzik equation governed by the scale λ.

The purpose of this contribution is to twofold. Firstly although IR works in arbitrary massive quantum field theories, for massless
theories it undergoes a remarkable simplification. Assuming an infrared regulator μ for the propagators, I(i)

log(μ
2) equals I(i)

log(λ
2) (λ �= 0),

plus a sum of terms proportional to powers of the logarithm of the ratio μ/λ. We will show in this contribution that for massless theories
all the divergencies to arbitrary loop order can be cast as a function of I(i)

log(λ
2), according to the definition

I(i)
log

(
μ2) =

Λ∫
k

1

(k2 − μ2)2
ln(i−1)

(
−k2 − μ2

λ2

)
, (1)

where
∫ Λ

k ≡ ∫
(d4k)/(2π)4 and the superscript Λ is a symbol for an implicit regularization. Secondly it is well known that renormalization

group functions constitute a testing ground for regularizations because they both encode the symmetry properties of the underlying model
which should be preserved by the regularizations and their expansion in perturbation theory contains terms which are universal, i.e.
renormalization scheme-independent. While some interesting simplifications take place in dimensional methods, e.g. in an inverse power
series in ε → 0 of the coupling constant, beta functions are determined uniquely by the residue of the simple pole on ε , it is pertinent
to ask what is the counterpart in IR. That is to say, one may wonder how the calculation of renormalization group functions systematizes
within a scheme where only basic divergent integrals are claimed to be sufficient to exhibit the ultraviolet properties of a model in a
symmetry preserving fashion. The answer to this question is that a general framework for renormalization group functions can be built
in which the simplifications of dimensional methods manifest themselves as relations between the coefficients of basic divergent integrals
coming from different Feynman graphs that contribute to a given renormalization group function.

We illustrate with the Yukawa model in 3 + 1 dimensions to 2nd-loop order which contains a γ5 matrix and hence the application of
dimensional regularization is more involved.

2. General ultraviolet structure of massless theories

The purpose of this section is to show that the ultraviolet content of an amplitude to nth loop order for massless models, considering
the definition, is written in terms of I(i)

log(λ
2). A general n-loop, l-point amplitude, after space–time and internal group algebra contractions

are performed, can always be written as a combination of integrals of the type

Λ∫
k

kμ1kμ2 · · ·kμ j

(k − p1)2 · · · (k − pl)
2

An−1
(
k, p1, . . . , pl, λ

2), (2)

where we have integrated n−1 times leaving only k, the most external loop momentum and the pi ’s are external momenta. For a massless
model suppose that An−1 is cast like

An−1
(
k, p1, . . . , pl, λ

2) = AΛ
n−1 +

n∑
i=1

ai(k, p1, . . . , pl) lni−1
(

− k2

λ2

)
+ Ān−1, (3)

in which Ān−1 is finite under integration on k and AΛ
n−1, the divergent part, represents the subdivergences which in principle are already

written in terms of I(i)
log(λ

2). The mass scale λ2 has emerged from a scale relations which characterizes a renormalization scheme in implicit
regularization. the coefficients ai(k, p1, . . . , pl) may contain powers in the external and internal momenta. To justify the assumption of
Eq. (3) we proceed with a proof by induction. For n = 2 (one loop order) it can be easily verified that (3) holds for A1 [2]. Now we
show that this assumption for (n − 1)th-loop order implies the same structure for the nth-loop order to conclude by induction that the
multiloop integrals at any order have the same structure. The relevant contributions come from the second term on the r.h.s. of (3),

Λ∫
k

kμ1 · · ·kμr(i)

[(k − p1)2 − μ2] · · · [(k − pl)
2 − μ2] lni−1

(
−k2 − μ2

λ2

)
, (4)

which has superficial degree of divergence r(i) − 2l + 4. Extra factors in the numerator were considered so as to account for the Lorentz
structure of the ai(k, p1, . . . , pl)’s. A fictitious mass μ2 was introduced in the propagators and the limit μ2 → 0 will be taken in the end.
A fictitious mass may always be introduced if the integral is infrared safe. This is necessary because although the integral is infrared safe,
the expansion of the integrand, as we explain below, breaks into infrared-divergent pieces. When a genuine infrared divergence appears,
this procedure can be problematic in non-Abelian theories. For such cases a new procedure within IR defining basic infrared-divergent
integrals is necessary in order to preserve symmetries [13].

We judiciously apply in the integrand the identity,

1

(pr − k)2 − μ2
= 1

(k2 − μ2)
− p2

r − 2pr · k

(k2 − μ2)[(pr − k)2 − μ2] , (5)
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